
Anytime Hybrid Best-First Search with Tree
Decomposition for Weighted CSP

David Allouche, Simon de Givry, George Katsirelos,
Thomas Schiex, Matthias Zytnicki

MIAT, UR-875, INRA, F-31320 Castanet Tolosan, France
firstname.lastname@toulouse.inra.fr

Abstract. We propose Hybrid Best First Search (HBFS), a search strategy for
optimization problems that combines Best First Search (BFS) and Depth First
Search (DFS). Like BFS, HBFS provides an anytime global lower bound on the
optimum, while also providing anytime upper bounds, like DFS. Hence, it pro-
vides feedback on the progress of search and solution quality in the form of an
optimality gap. In addition, it exhibits highly dynamic behavior that allows it to
perform on par with methods like limited discrepancy search and frequent restart-
ing in terms of quickly finding good solutions.
We also use the lower bounds reported by HBFS in problems with small treewidth,
by integrating it into Backtracking with Tree Decomposition (BTD). BTD-HBFS
exploits the lower bounds reported by HBFS in individual clusters to improve the
anytime behavior and global pruning lower bound of BTD.
In an extensive empirical evaluation on optimization problems from a variety of
application domains, we show that both HBFS and BTD-HBFS improve both
anytime and overall performance compared to their counterparts.

Keywords: combinatorial optimization, anytime algorithm, weighted constraint
satisfaction problem, cost function networks, best-first search, tree decomposition

1 Introduction

Branch and Bound search is a fundamental tool in exact combinatorial optimization.
For minimization, in order to prune the search tree, all variants of Branch and Bound
rely on a local lower bound on the cost of the best solution below a given node.

Depth First Search (DFS) always develops a deepest unexplored node. When the
gap between the local lower bound and a global upper bound on the cost of an optimal
solution – usually provided by the best known solution – becomes empty, backtrack
occurs. DFS is often used in Constraint Programming because it offers polyspace com-
plexity, it takes advantage of the incrementality of local consistencies and it has a rea-
sonably good anytime behavior that can be further enhanced by branching heuristics.
This anytime behavior is however largely destroyed in DFS variants targeted at solving
problems with a reasonable treewidth such as BTD [7] or AND/OR search [6].

Best-First Search (BFS) instead always develops the node with the lowest lower
bound first. It offers a running global lower bound and has been proved to never develop
more nodes than DFS for the same lower bound [22]. But it has a worst-case exponential
space complexity and the optimal solution is always the only solution produced.

2 Allouche et al.

An ideal Branch and Bound algorithm would combine the best of all approaches.
It would have a bearable space complexity, benefit from the incrementality of local
consistencies and offer both updated global upper and lower bounds as the problem is
solved. It would also not loose all its anytime qualities when used in the context of
treewidth sensitive algorithms such as BTD.

With updated global lower and upper bounds, it becomes possible to compute a
current global optimality gap. This gap can serve as a meaningful indicator of search
progress, providing a direct feedback in terms of the criteria being optimized. This gap
also becomes of prime importance in the context of tree-decomposition based Branch
and Bound algorithms such as BTD [7] as global bounds for each cluster can typically
be used to enhance pruning in other clusters.

In this paper, we introduce HBFS, an hybrid, easy to implement, anyspace Branch
and Bound algorithm combining the qualities of DFS and BFS. The only limitation of
HBFS is that it may require to compromise the anytime updating of the global lower
bound for space. This can be achieved dynamically during search. HBFS can also be
combined with a tree-decomposition to define the more complex BTD-HBFS, a BTD
variant offering anytime solutions and updated global optimality gap.

On a set of more than 3,000 benchmark problems from various sources (MaxCSP,
WCSP, Markov Random Fields, Partial Weighted MaxSAT) including resource alloca-
tion, bioinformatics, image processing and uncertain reasoning problems, we observe
that HBFS improves DFS in term of efficiency, while being able to quickly provide good
solutions – on par with LDS and Luby restarts – and a global running optimality gap.
Similarly, HBFS is able to improve the efficiency and anytime capacities of BTD.

2 Background

Our presentation is restricted to binary problems for simplicity. Our implementation
does not have such restriction. A binary Cost Function Network (CFN) is a triplet
(X,D,W). X = {1, . . . , n} is a set of n variables. Each variable i ∈ X has a fi-
nite domain Di ∈ D of values than can be assigned to it. The maximum domain
size is d. W is a set of cost functions. A binary cost function wij ∈ W is a func-
tion wij : Di×Dj 7→ [0, k] where k is a given maximum integer cost corresponding to
a completely forbidden assignment (expressing hard constraints). If they do not exist,
we add to W one unary cost function for every variable such that wi : Di 7→ [0, k] and
a zero arity constraint w∅ (a constant cost payed by any assignment, defining a lower
bound on the optimum). All these additional cost functions will have initial value 0,
leaving the semantics of the problem unchanged.

The Weighted Constraint Satisfaction Problem (WCSP) is to find a minimum cost
complete assignment: min(a1,...,an)∈

∏
iDi
{w∅+

∑n
i=1 wi(ai)+

∑
wij∈W wij(ai, aj)},

an optimization problem with an associated NP-complete decision problem.
The WCSP can be solved exactly using Branch and Bound maintaining some lower

bound: at each node ν of a tree, we use the local non naive lower bound ν.lb = w∅
provided by a given soft arc consistency [5]. Each node corresponds to a sequence of
decisions ν.δ. The root node has an empty decision sequence. When a node is explored,
an unassigned variable is chosen and a branching decision to either assign the variable

Hybrid Best-First Search for WCSP 3

to a chosen value (left branch, positive decision) or remove the value from the domain
(right branch, negative decision) is taken. The number of decisions taken to reach a
given node ν is the depth of the node, ν.depth . A node of the search tree that corre-
sponds to a complete assignment is called a leaf. At this point, ν.lb is assumed to be
equal to the node cost (which is guaranteed by all soft arc consistencies).

Fig. 1. A tree-decomposition of the
CELAR06 radio frequency assignment
problem, rooted in C1 with subproblem P5

highlighted.

The graph G = (X,E) of a CFN has one
vertex for each variable and one edge (i, j)
for every binary cost function wij ∈ W . A
tree decomposition of this graph is defined
by a tree (C, T). The set of nodes of the
tree is C = {C1, . . . , Cm} where Ce is a
set of variables (Ce ⊆ X) called a cluster.
T is a set of edges connecting clusters and
forming a tree (a connected acyclic graph).
The set of clusters C must cover all the vari-
ables (

⋃
Ce∈C Ce = X) and all the cost func-

tions (∀{i, j} ∈ E,∃Ce ∈ C s.t. i, j ∈ Ce).
Furthermore, if a variable i appears in two
clusters Ce and Cg , i must also appear in
all the clusters Cf on the unique path from
Ce to Cg in (C, T). If the cardinality of the
largest cluster in a tree decomposition is ω+1
then the width of the decomposition is ω. The
treewidth of a graph is the minimum width
among all its decompositions [24].

3 Hybrid Best first search

Classical BFS explores the search tree by keeping a list open of open nodes represent-
ing unexplored subproblems. Initially, this list is reduced to the root node at depth 0.
Iteratively, a best node is explored: the node is removed and replaced by its two left and
right children with updated decisions, lower bound and depth. In this paper we always
choose as best node a node with the smallest ν.lb, breaking ties by selecting a node
with maximum ν.depth . The first leaf of the tree explored is then guaranteed to be an
optimal solution [14, 22]. The list open may reach a size in O(dn) and, if incremen-
tality in the lower bound computation is sought, each node should hold the minimum
data-structures required for soft arc consistency enforcing (in O(ed) per node).

The pseudocode for Hybrid BFS is described as Algorithm 1. HBFS starts with
the empty root node in the list of open nodes. It then iteratively picks a best node ν
from the open list as above, replays all the decisions in ν.δ leading to an assignment
Aν , while maintaining consistency. It then performs a depth first search probe starting
from that node for a limited number Z of backtracks. The DFS algorithm is a standard
DFS algorithm except for the fact that, when the bound on the number of backtracks
is reached, it places all the nodes corresponding to open right branches of its current
search state in the open list (see Figure 2).

4 Allouche et al.
1

2

3 6

4 5 7

8

Fig. 2. A tree that is partially
explored by DFS with back-
track limit = 3. Nodes with a
bold border are leaves, nodes
with no border are placed in
the open list after the backtrack
bound is exceeded. Nodes are
numbered in the order they are
visited.

At the price of increased memory usage, this hybrid
maintains the advantages of depth-first search. Since it
spends a significant amount of its time in a DFS sub-
routine, it can exploit the incrementality of arc con-
sistency filtering during DFS search without any extra
space cost: nodes in the open list will just contain de-
cisions δ and lower bound lb, avoiding the extra O(ed)
space required for incrementality during BFS. However,
each time a node is picked up in open , the set of ν.depth
decisions must be “replayed” and local consistency re-
inforced from the root node state, leading to redundant
propagation. This cost can be mitigated to some degree
by merging all decisions into one. Hence, a single fix-
point has to be computed rather than ν.depth . Addition-
ally, the cost can be further reduced using other tech-
niques employed by copying solvers [26]. Regardless
of these mitigation techniques, some redundancy is un-
avoidable, hence the number of backtracks performed at
each DFS probe should be large enough to avoid excessive redundancy.

Second, as it is allowed to perform Z backtracks in a depth-first manner before it
picks a new node, it may find new and better incumbent solutions, thus it is anytime.
The number of backtracks of each DFS probe should be sufficiently small to offer quick
diversification: by exploring a new best node, we are offered the opportunity to recon-
sider early choices, similarly to what LDS [8] and Luby randomized restarts [18] may
offer. Additionally, with early upper bounds, we can also prune the open node list and
remove all nodes such that ν.lb ≥ ub.

To balance the conflicting objectives of reducing repeated propagation and diversifi-
cation, we dynamically adjust the amount of backtracks Z that can be performed during
one DFS probe by trying to keep the observed rate of redundantly propagated decisions
between reasonable bounds (α and β). In all the algorithms here, we assume that the
number of nodes (Nodes) and backtracks (Backtracks) are implicitly maintained dur-
ing search.

This hybrid does not preserve the polyspace complexity of DFS. However, it can
easily be made anyspace. If memory is exhausted (or a memory upper bound is reached,
with the same effect), the algorithm can switch from bounded DFS to complete DFS.
This means that for every node it picks from the open list, it explores the entire subtree
under that node. Hence, it will not generate any new open nodes. It can continue in this
mode of operation until memory pressure is relieved.

Finally, this method computes stronger global lower bounds than DFS, as the cost
of a best node in the open list defines a global lower bound, as in BFS. DFS instead
cannot improve on the global lower bound computed at the root until it finally visits the
first right branch. In the context of a single instance this is only important in the sense
that it provides a better estimation of the optimality gap. However, we will see that this
can improve performance in decomposition-based methods.

Hybrid Best-First Search for WCSP 5

Function HBFS(clb,cub) : pair(integer,integer)
open := ν(δ = ∅, lb = clb) ;
while (open 6= ∅ and clb < cub) do
ν :=pop(open) /* Choose a node with minimum lower bound and maximum depth */;
Restore state ν.δ, leading to assignment Aν , maintaining local consistency ;
NodesRecompute := NodesRecompute + ν.depth ;
cub :=DFS(Aν ,cub,Z)/* puts all right open branches in open */ ;
clb := max(clb, lb(open)) ;
if (NodesRecompute > 0) then

if (NodesRecompute/Nodes > β and Z ≤ N) then Z := 2× Z;
else if (NodesRecompute/Nodes < α and Z ≥ 2) then Z := Z/2;

return (clb, cub);
Algorithm 1: Hybrid Best First Search. Initial call: HBFS(w∅,k) with Z = 1.

3.1 Related work

Alternate search space exploration schemes have been proposed in the field of heuris-
tic search, as variations of A* search. These schemes can be applied to discrete opti-
mization, yielding other variants of best-first search. However, depth first search is not
effective or even feasible in domains where A* search is used: for example, it is possi-
ble in planning to have exponentially long sequences of actions when short plans exist.
Hence, methods like BRFSL(k) [27] can only do bounded-depth DFS probes. Also, in
contrast to HBFS, they do not insert the open nodes of the DFS probes into the open list
of BFS. Other methods like Weighted best first search [23], ARA* [16] and ANA* [2]
weigh future assignments more heavily in order to bias the search towards solutions.
We do not need to modify the branching heuristic in any way in HBFS.

Stratification [1], which solves a weighted MaxSAT instance by iteratively con-
sidering larger subsets of its clauses, starting with those that have the highest weight,
provides similar benefits to HBFS, as provides solutions quickly and produces lower
bounds. This techniques, however, can be viewed as a wrapper over an optimization
method and is therefore orthogonal to HBFS.

Alternate heuristics for choosing the next node to explore may yield different al-
gorithms. When we can identify a preferred value to assign at each choice point, the
discrepancy of a node ν is the number of right branches in the path from the root to ν.
If we always open the node with the smallest discrepancy, set Z = 1 and disable the
adaptive heuristic, HBFS is identical to Limited Discrepancy Search (LDS)1 [8].

In ILP, a closely related approach is so-called BFS with diving heuristics [3]. Such
heuristics perform a single depth first probe trying to find a feasible solution. Although
the idea is quite close to that of HBFS, it is typically restricted to a single branch, the
open nodes it leaves are not added to the open node file and is treated separately from
the rest of the search process. This is in part motivated by the fact that DFS is considered
impractical in ILP [17] and by the fact that the lower bounding method (LP) used is not
as lightweight as those used in WCSP.

1 In WCSP optimization, we always have a non naive value heuristic that selects a value (i, a)
with minimum unary marginal cost wi(a) or better, the EAC support [13].

6 Allouche et al.

4 Hybrid Best First Search and Tree Decompositions

When the graph of a CFN has bounded treewidth, the O(dn) worst-case complexity of
DFS can be improved using a tree decomposition of the CFN graph. We can trivially
observe that the tree decomposition can be rooted by selecting a root cluster denotedC1.
The separator of a non root cluster Ce is Ce∩pa(Ce), where pa(Ce) is the parent of Ce
in T . Local consistency can be enforced on the problem and provide a cluster-localized
lower-bound we∅ for each cluster Ce. The sum of these cluster-wise lower bounds is a
lower bound for the complete problem. Beyond this trivial observation, Terrioux and
Jégou [28] and de Givry et al. [7] have extended BTD [9] (which we call BTD-DFS here
for clarity) from pure satisfaction problems to the case of optimization (WCSP), in a
way similar to AND/OR search [19]. Next, we briefly describe BTD-DFS, as given by
de Givry et al, as we base our own algorithm on this.

In BTD-DFS, by always assigning the variables of a cluster before the variables of its
descendant clusters, it is possible to exploit the fact that assigning a cluster Ce separates
all its child clusters children(Ce). Each child cluster Cf is the root of a subproblem
Pf defined by the subtree rooted in Cf which becomes independent of others. So, each
subproblem Pf conditioned by the current assignment Af of its separator, can be in-
dependently and recursively solved to optimality. If we memoize the optimum cost of
every solved conditioned subproblem Pe|Ae in a cache, then Pe|Ae will never be solved
again and an overall O(ndω+1) time complexity can be guaranteed.

Although this simple strategy offers an attractive worst case theoretical bound, it
may behave poorly in practice. Indeed, each conditioned subproblem Pe|Ae is always
solved from scratch to optimality. This ignores additional information that can be ex-
tracted from already solved clusters. Imagine Ce has been assigned and that we have
an upper bound ub (a solution) for the problem Pe|Ae. Assume that Ce has two chil-
dren Cf and Cf ′ and that we have solved the first subproblem Pf |Af to optimality.
By subtracting the lower bound we∅ and the optimum of Pf |Af from ub, we obtain
the maximum cost that a solution of Pf ′ |Af ′ may have in order to be able to improve
over ub. Instead of solving it from scratch, we can solve Pf ′ |Af ′ with this initial upper
bound and either find an optimal solution – which can be cached – or fail. If we fail, we
have proved a global lower bound on the cost of an optimal solution of Pf ′ |Af ′ . This
lower bound can be cached and prevent repeated search if Pf ′ |Af ′ is revisited with the
same or a lower initial upper bound. Otherwise, the problem will be solved again and
again either solved to optimality or fail and provide an improved global lower bound.
This has been shown to improve search in practice while offering a theoretical bound
on time complexity inO(kn.dω+1) (each time a subproblem Pf |Af is solved again, the
global lower bound increases at least by 1).

In practice, we therefore cache two values, LBPe|Ae
and UBPe|Ae

, for every visited
assignment Ae of the separator of every cluster Ce. We always assume caching is done
implicitly: LBPe|Ae

is updated every time a stronger lower bound is proved for Pe|Ae
and UBPe|Ae

when an updated upper bound is found. When an optimal solution is
found and proved to be optimal, we will therefore have LBPe|Ae

= UBPe|Ae
. Thanks

to these cached bounds and to the cluster-wise local lower bounds we∅, an improved
local lower bound lb(Pe|Ae) for the subproblem Pe|Ae can be computed by recursively
summing the maximum of the cached and local bound (see [7]).

Hybrid Best-First Search for WCSP 7

We show pseudocode for the resulting algorithm combining BTD and DFS in Al-
gorithm 2. Grayed lines in this code are not needed for the DFS variant and should be
ignored. The algorithm is called on root cluster C1, with an assignment A1 = ∅, a
set of unassigned variables V = C1 and initial lower and upper bound clb and cub set
respectively to lb(P1|∅) and k (the maximum cost). The last argument, RecCall is a
functional argument that denotes which function will be used to recurse inside BTD-
DFS. Here, RecCall will be initially equal to BTD-DFS itself. The algorithm always re-
turns two identical values equal to the current upper bound.2 Caches are initially empty
and return naive values LBPe/A = 0 and UBPe/A = k for all clusters and separator
assignments.

Function BTD-DFS(A,Ce,V ,clb,cub,RecCall) : pair(integer,integer)
if (V 6= ∅) then
i :=pop(V) /* Choose an unassigned variable in Ce */ ;
a :=pop(Di) /* Choose a value */ ;
Assign a to i, maintaining local consistency on subproblem lb(Pe|A ∪ {(i = a)}) ;
clb′ := max(clb, lb(Pe|A ∪ {(i = a)})) ;
if (clb′ < cub) then

(cub, cub) := BTD-DFS(A ∪ {(i = a)}, Ce, V − {i}, clb′, cub,RecCall);
Ce.backtracks := Ce.backtracks + 1;
if (max(clb, lb(Pe|A)) < cub) then

Remove a from i, maintaining local consistency on subproblem lb(Pe|A ∪ {(i 6= a)}) ;
clb′ := max(clb, lb(Pe|A ∪ {(i 6= a)})) ;
if (clb′ < cub) then

if (Ce.backtracks < Ce.limit and Backtracks < Pe.limit) then
(cub, cub) := BTD-DFS(A ∪ {(i 6= a)}, Ce, V , clb′, cub,RecCall);

else /* Stop depth-first search */
Push current search node in open list of Pe|A at position clb′ ;

else
S := Children(Ce) ;
/* Solve all clusters with non-zero optimality gap and unchanged lb or ub */ ;
while (S 6= ∅ and lb(Pe|A) < cub) do
Cf :=pop(S) /* Choose a child cluster */ ;
if (LBPf |A < UBPf |A) then

cub′ := min(UBPf |A, cub − [lb(Pe|A)− lb(Pf |Af)]) ;
(clb′′, cub′′) := RecCall (A, Cf , Cf , lb(Pf |Af), cub′,RecCall);
Update LBPf |A and UBPf |A using clb′′ and cub′′;

cub := min(cub, we∅ +
∑
Cf∈Children(Ce)

UBPf |A);

if max(clb, lb(Pe|A)) < cub then
Push current search node in open list of Pe|A at position max(clb, lb(Pe|A)) ;
Ce.limit := Ce.backtracks /* Stop depth-first search */ ;

return (cub, cub)
Algorithm 2: BTD using depth-first search

2 This is clearly redundant for BTD-DFS, but allows a more uniform presentation with BTD-
HBFS

8 Allouche et al.

4.1 Using HBFS in BTD

BTD-DFS has two main disadvantages: first, it has very poor anytime behavior, as it
cannot produce a solution in a decomposition with k leaves until k−1 leaf clusters have
been completely solved. This affects the strength of pruning, as values are only pruned
if the current lower bound added to the marginal cost of the value exceeds the upper
bound. Second, because child clusters are examined in order, only the lower bounds
of siblings earlier than Cf in that order can contribute to pruning in Cf . For example,
consider a cluster Ce with 3 child clusters Cf1 , Cf2 , Cf3 . Assume that ub = 31 and
under an assignment A, we∅ has known cost 10 while Pf1 |Af1 , Pf2 |Af2 and Pf3 |Af3
all have optimal cost 10, and lb(Pf1 |Af1) = lb(Pf2 |Af2) = lb(Pf3 |Af3) = 0. Clearly
the subproblem under Ce cannot improve on the upper bound, but when we solve Cf1
and Cf2 , BTD-DFS does not reduce the effective upper bound at all. However, it may
be relatively easy to prove a lower bound of 7 for each of the child clusters. If we had
this information, we could backtrack.

HBFS has the ability to quickly provide good lower and upper bounds and interrupts
itself as soon as the limit number of backtracks is reached. Using HBFS instead of DFS
in BTD should allow to quickly probe each subproblem to obtain intermediate upper
and lower bounds for each of them. The upper bounds can be used to quickly build a
global solution, giving anytime behavior to BTD. The lower bounds of all subproblems
can be used to improve pruning in all other clusters.

The pseudocode of BTD-HBFS is described as Algorithm 3. It takes the same ar-
guments as BTD-DFS but ignores the last one (used only to pass information from
BTD-HBFS to BTD-DFS). BTD-HBFS relies on BTD-DFS pseudocode, assuming that
all grayed lines of BTD-DFS are active. These reactivated lines in Algorithm 2 im-
pose per-cluster and per-subproblem backtrack limits. Every cluster Ce has a counter
Ce.backtracks for number of backtracks performed inside the cluster and an associ-
ated limit Ce.limit . Every subproblem Pe has a limit Pe.limit on the number of back-
tracks N performed inside the subproblem. Initially, Ce.limit = Pe.limit = ∞ for all
Ce ∈ C.

Every subproblem Pe|Ae has its own list of open nodes Pe|Ae.open for each upper
bound which it is given. The value of the upper bound participates in the definition of
the actual search space that needs to be explored. If the same subproblem is revisited
later with a lower upper bound, then the search space shrinks and we can just copy the
open list associated with the higher bound and prune all nodes ν such that ν.lb ≥ ub.
But if the upper bound is more relaxed than any previous upper bound then we need to
create a new open list starting with the root node.

Finally, the loop in line 1 is interrupted as soon as the optimality gap reduces or the
number of backtracks reaches the subproblem limit, making the search more dynamic.
If subproblems quickly update their bound, the remaining backtracks can be used in a
higher cluster. However, the subproblem under each child cluster is guaranteed to get at
least Z backtracks. The result is that we spend most of the time in leaf clusters. When
one cluster exhausts its budget, the search quickly returns to the root cluster.

Example 1. Consider the example in figure 3. We have a CFN with the tree decom-
position given in the box labeled (C, T) and the search in each cluster is shown in a

Hybrid Best-First Search for WCSP 9

box labeled by that cluster’s name. Let N = 2 and Z = 1 in this example. The search
visits nodes as they are numbered in the figure. When it reaches node 4, cluster C1 is
completely instantiated and hence it descends into C2 and after node 7 it descends into
C4. After node 10, we have performed a backtrack in this cluster, and since Z = 1 we
end this DFS probe and return control to BTD-HBFS. The limit on the number of back-
tracks in P4 is still not exceeded, so we choose a new node from the open list, node 11,
a conflict. Again we return control to BTD-HBFS and, having exceeded the backtrack
limit on P4, exit this cluster, but with an improved lower bound. Since C4 exceeded its
backtrack limit before improving its lower bound, no more search is allowed in parent
clusters. The search is allowed, however, to visit sibling clusters, hence it explores C5

(nodes 12–14), which it exits with an improved upper bound before exceeding its back-
track limit, and C3 (nodes 15–18). Once it returns to node 7 after cluster C5, that node
is not closed, because one of the child clusters is not closed. It is instead put back on
the open list. Similarly node 4 is put back on the open list of C1. At that point, best
first search picks another node from the open list of C1, node 19, and continues from
there. ut

Function BTD-HBFS(A,Ce,V ,clb,cub,) : pair(integer,integer)
open := open list of Pe|A(cub) ;
if (open = ∅) then

if exists minimum cub′ s.t. cub′ > cub and open(Pe|A(cub′)) 6= ∅ then
open = {ν ∈ open(Pe|A(cub′)) | ν.lb < cub}

else
open = {∅} /* Contains only the root node at position clb */

Pe.limit := Backtracks +N /* Set a global backtrack limit for the subproblem */ ;
clb′ := max(clb, lb(open)) ;
cub′ := cub ;

1 while (open 6= ∅ and clb′ < cub′ and (Ce = C1 or (clb′ = clb and cub′ =
cub and Backtracks < Pe.limit))) do
ν :=pop(open) /* Choose a node with minimum lower bound and maximum depth */ ;
Restore state ν.δ, leading to assignment Aν , maintaining local consistency ;
NodesRecompute := NodesRecompute + ν.depth ;
Ce.limit := Ce.backtracks + Z /* Set a depth-first search backtrack limit */ ;
(cub′, cub′) :=BTD-DFS(Aν ,Ce,Vν ,max(clb′, lb(ν), lb(Pe|Aν)),cub′,BTD-HBFS) ;
clb′ := max(clb′, lb(open)) ;
if (NodesRecompute > 0) then

if (NodesRecompute/Nodes > β and Z ≤ N) then Z := 2× Z;
else if (NodesRecompute/Nodes < α and Z ≥ 2) then Z := Z/2;

return (clb′, cub′) /* invariant clb′ ≥ clb and cub′ ≤ cub */ ;
Algorithm 3: Hybrid Best First Search with Tree Decomposition.

BTD-HBFS addresses both the issues of BTD that we identified above. First, it is
anytime, because as soon as UBPe|Ae

< k for all subproblems, we can combine the
assignments that gave these upper bounds to produce a global solution. Second, it con-
stantly updates lower bounds for all active subproblems, so the search effort in each
subproblem immediately exploits all other lower bounds.

10 Allouche et al.

(C, T)

C1

C2 C3

C4 C5

C1

1

2 19

3

4

C2/A1

5

6

7

C4/A2

8

9 11

10

C5/A2

12

13

14

C3/A1

15

16 17

18

Fig. 3. An example of a run of BTD-HBFS. White nodes are open, nodes with a black border are
conflicts (square) or solutions (circle). Grey nodes with a white border are explored but put back
in the open list. Grey nodes with no border are closed.

Like HBFS, BTD-HBFS can be made anyspace, i.e., its memory usage can be lim-
ited to any amount beyond what is needed for BTD-DFS, including zero. The cache of
bounds can also be limited, at the expense of additional subproblem recomputations,
leading to worst-case complexity exponential in the tree decomposition height.

Theorem 1. Given a CFN P with treewidth ω, BTD-HBFS computes the optimum in
time O(kndω+1) and space O(knd2ω).

Proof (Sketch). For correctness, observe that BTD-DFS solves independent subprob-
lems separately using DFS, hence using HBFS or any other solution method does not
affect correctness. Each leaf node in an internal cluster is closed only when all child
clusters are solved, hence all bounds for each subproblem and open node list are cor-
rect. Finally, exploration at the root cluster continues until the optimality gap is closed.

Hybrid Best-First Search for WCSP 11

Complexity stems from the complexity of BTD and the additional overhead of storing
open lists for each separator assignment and upper bound. ut

We implemented a simpler version of this algorithm with better space complexity:
each time BTD-HBFS is called on Pe|A with a higher upper bound than previously
stored, we wipe the open list and replace it with the root node of Ce. This removes
theoretical guarantees on the performance of the algorithm, but does not hurt practical
performance, as we will see.

4.2 Related work

AND/OR Branch and Bound search has already been combined with BFS [20]. The
resulting AOBF algorithm, has good worst-case time complexity similar to BTD-DFS,
but otherwise has the space-intensive non anytime behavior of BFS.

The poor anytime ability of BTD has been addressed by breadth-rotating AND/OR
search (BRAO) [21]. BRAO interleaves DFS on all components, so it can combine the
incumbents of all components to produce a global solution. However, as it performs
DFS on each component, it does not produce better lower bounds.

OR-decomposition [12] is an anytime method that exploits lower bounds produced
by other clusters by performing DFS in which it interleaves variable choices from all
components, and uses caching to achieve the same effect as BTD. However, the global
lower bound it computes depends on the partial assignments of all components. Thus
it may revisit the same partial assignment of one component many times. This may
also inhibit its anytime behavior, as a high cost partial assignment in one component
will prevent other components from reaching good solutions. Moreover, the local lower
bound for each component is only updated by visiting the right branch at its root.

Russian Doll Search [25], uses DFS to solve each cluster of a rooted tree decompo-
sition in topological order. This method is not anytime, as it cannot produce a solution
until it starts solving the root cluster. Moreover, it computes lower bounds that are in-
dependent of the separator assignment, hence can be lower than their true value.

5 Experimental Results

We used benchmark instances including stochastic graphical models from the UAI eval-
uation in 2008 and 2010, the Probabilistic Inference Challenge 2011, the Weighted
Partial Max-SAT Evaluation 2013, the MiniZinc Challenge 2012 and 2013, Computer
Vision and Pattern Recognition problems from OpenGM2 3 and additional instances
from the CostFunctionLib 4. This is a total of more than 3,000 instances that can be
encoded as Cost Function Networks, available at http://genoweb.toulouse.
inra.fr/˜degivry/evalgm, with domain sizes that range from d = 2 to 503,
n = 2 to 903, 884 variables, and e = 3 to 2, 912, 880 cost functions of arity from r = 2

3 http://hci.iwr.uni-heidelberg.de/opengm2/
4 https://mulcyber.toulouse.inra.fr/projects/costfunctionlib

12 Allouche et al.

to 580. We used toulbar2 version 0.9.8.0-dev5 on a cluster of 48-core Opteron 6176
nodes at 2.3 GHz with 378 GB RAM, with a limit of 24 simultaneous jobs per node.

In all cases, the local lower bound is provided by maintaining EDAC [13]. The vari-
able ordering includes both weighted-degree [4] and last-conflict [15] heuristics. The
value ordering is to select the EAC support value first [13]. All executions used a min-
fill variable ordering for DAC preprocessing. For HBFS, we set the node recomputation
parameters to [α, β] = [5%, 10%] and the backtrack limit N to 10, 000.

The methods based on BTD use a different value ordering heuristic: if a solution
is known for a cluster, it keeps the same value if possible and if not uses EAC support
values as the previous methods. A min-fill ordering is used for building a tree decom-
position. Children of a cluster are statically sorted by minimum separator size first and
smallest number of subproblem variables next.

Our aim is to determine whether HBFS is able to improve over DFS both in terms of
number of problems solved (including the optimality proof) and in its anytime behavior.
Similarly, we compare BTD-HBFS to BTD-DFS. We include in our comparison two
methods that are known to significantly improve the upper bound anytime behavior of
DFS: Limited Discrepancy Search [8] and DFS with Luby restarts [18].

We also include results from BRAO [21] using the daoopt solver6 with static mini-
bucket lower bounds of different strength (i-bound set to 15 and 35) and without local
search nor iterative min-fill preprocessing. daoopt is restricted to cost functions ex-
pressed by complete tables, hence we exclude most MaxSAT families (except MIPLib
and MaxClique) in tests where we use it.

5.1 Proving optimality

We show in figure 4 a cactus plot comparing all the algorithms that do not use tree
decompositions, but also include BTD-HBFSrk for reference (see below). We see that
HBFS is the best performing decomposition-unaware algorithm. It outperforms DFS
and DFS with Luby restarts significantly, and slightly outperforms LDS.

Although our benchmark set includes very large instances, and our HBFS imple-
mentation does not include automatic control of space usage, no instance required more
than 32 GB. The median memory usage was 36.8 MB for DFS and 38.2 MB for hybrid
BFS. The worst-case largest ratio between HBFS and DFS was 379.8MB

12.1MB = 31.4 on
MRF Grid instance grid20x20.f15 (unsolved in one hour by both methods).

In figure 5, we compare algorithms exploiting a tree decomposition (BTD-like) or a
pseudo-tree (BRAO).We see that BTD-HBFS slightly outperforms BTD-DFS, both out-
performing BRAO. However, many of these instances have large treewidth and BTD-
like methods are not ideal for these. Even for instances with small treewidth, the de-
composition is often a deep tree in which each cluster shares all but one variables with
its parent. In these cases, following the tree decomposition imposes a static variable
ordering on BTD, while HBFS degrades to DFS. Finding good tree decompositions is
not straightforward [10, 11]. A simple way to improve one is to merge clusters until no

5 Available in the git repository at https://mulcyber.toulouse.inra.fr/
projects/toulbar2/ in the bfs branch.

6 https://github.com/lotten/daoopt

Hybrid Best-First Search for WCSP 13

0

500

1000

1500

2000

2500

3000

3500

1700 1800 1900 2000 2100 2200 2300 2400 2500

C
P

U
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

H B FS
LD S

B TD -H B FS -r4
D FS
Luby

Fig. 4. Number of solved instances within a given time. Methods in the legend are sorted at
time=20min.

separator has size greater than k, even if this increases width. We call the algorithms
that apply this BTD-DFSrk and BTD-HBFSrk . Figure 5 includes results for BTD-DFSr4

and BTD-HBFSr4 . BTD-DFSr4 is significantly better than BTD-DFS and BTD-HBFSr4

outperforms BTD-DFSr4 by an even greater margin. BTD-HBFSr4 is also the overall
best performer as shown in figure 4.

0

500

1000

1500

2000

2500

3000

3500

1400 1500 1600 1700 1800 1900 2000 2100 2200

C
P

U
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

BTD-HBFS-r4
BTD-r4

BTD-HBFS
BTD

BRAO i=35
BRAO i=15

Fig. 5. Number of solved instances as time passes on a restricted benchmark set (without
MaxSAT). Methods in the legend are sorted at time=20min.

5.2 Anytime behavior

To analyze the algorithms’ anytime behavior, we first show in figure 6 the evolution of
the lower and upper bounds for two instances: the SPOT5 404 (left) and the RLFAP
CELAR06 instances (right). We solve both instances using DFS, LDS, DFS with Luby
restarts, HBFS, BTD-DFS and BTD-HBFS. In both instances, we see that HBFS and
BTD-HBFS improve significantly on the upper bound anytime ability of DFS and BTD-
DFS, respectively. Moreover, the lower bound that they report increases quickly in the

14 Allouche et al.

beginning and keeps increasing with time. For all other algorithms, the lower bound
increases by small amounts and infrequently, when the left branch of the root node is
closed. The HBFS variants are as fast as the base algorithms in proving optimality.

60

70

80

90

100

110

120

130

0.1 1 10 100 1000

HBFS
Luby
LDS

DFS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1000

Luby
HBFS

BTD -HBFS
LDS
BTD
DFS

Fig. 6. Evolution of the lower and upper bounds (Y axis, in cost units) as time (X axis, in seconds)
passes for HBFS, Luby restart, LDS, and DFS on SPOT5 404 instance (left) and also BTD, and
BTD-HBFS for the RLFAP CELAR06 instance (right). Methods are sorted in increasing time to
find the optimum. For each curve, the first point represents the time where the optimum is found
and the second point the time (if any) of proof of optimality.

In figure 7, we summarize the evolution of lower and upper bounds for each algo-
rithm over all instances that required more than 5 sec to be solved by DFS. Specifically,
for each instance I we normalize all costs as follows: the initial lower bound produced
by EDAC (which is common to all algorithms) is 0; the best – but potentially subopti-
mal – solution found by any algorithm is 1; the worst solution is 2. This normalization
is invariant to translation and scaling. Additionally, we normalize time from 0 to 1 for
each pair of algorithm A and instance I , so that preprocessing ends at time 0 and each
run finishes at time 1. This time normalization is different for different instances and
for different algorithms on the same instance. A point 〈x, y〉 on the lower bound line
for algorithm A in figure 7 means that after normalized runtime x, algorithm A has
proved on average over all instances a normalized lower bound of y and similarly for
the upper bound. We show both the upper and lower bound curves for all algorithms
evaluated here. In order for the last point of each curve to be visible, we extend all
curves horizontally after 1.0.

This figure mostly ignores absolute performance in order to illustrate the evolution
of upper and lower bounds with each algorithm, hence cannot be interpreted without the
additional information provided by the cactus plots in figures 4 and 5. It confirms that
HBFS improves on DFS in terms of both upper and lower bound anytime behavior and
similarly for BTD-HBFSr4 over BTD-DFSr4 and BRAO, with the latter being especially
dramatic. The two HBFS variants are, as expected, significantly better than all other
algorithms in terms of the lower bounds they produce. HBFS and BTD-HBFSr4 produce
solutions of the same quality as LDS, while DFS-Luby is slightly better than this group
on this restricted benchmark set (without MaxSAT).

Despite the fact that time to solve an instance is normalized away in figure 7, it
does give some information that is absent from the cactus plots and that is the average
normalized lower and upper bounds at time 1. Figure 7 tells us that DFS-Luby finds the

Hybrid Best-First Search for WCSP 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

HBFS
DFS

DFS-LDS
DFS-Luby

BTD-HBFS-r4
BTD-r4

BRAO i=15
BRAO i=35

Fig. 7. Average evolution of normalized upper and lower bounds for each algorithm.

best solution most often, as its upper bound curve is the lowest at time 1. It is followed
closely by the HBFS variants and LDS, while DFS and BTD-DFSr4 are significantly
worse. On the other hand, DFS-Luby is significantly worse than the HBFS variants in
the cactus plot. HBFS and BTD-HBFSr4 give better lower bounds in those instances that
they failed to solve, so their lower bound curves are higher at point 1.

6 Conclusions

Hybrid BFS is an easily implemented variant of the Branch and Bound algorithm com-
bining advantages of BFS and DFS. While being a generic strategy, applicable to es-
sentially any combinatorial optimization framework, we used it to improve Depth First
Branch and Bound maintaining soft arc consistency and tested it on a large benchmark
set of problems from various formalisms, including Cost Function Networks, Markov
Random Field, Partial Weighted MaxSAT and CP instances representing a variety of
application domains in bioinformatics, planning, resource allocation, image process-
ing and more. We showed that HBFS improves on DFS or DFS equipped with LDS or
restarts in terms of number of problems solved within a deadline but also in terms of
anytime quality and optimality gap information.

HBFS is also able to improve Tree Decomposition aware variants of DFS such as
BTD, being able to solve more problems than the previous DFS based BTD on the same
set of benchmarks. BTD is targeted at problems with relatively low treewidth and has
been instrumental in solving difficult radio-link frequency assignment problems. On
such problems, BTD-HBFS provides to BTD the same improvements as to DFS.

Its ability to provide feedback on the remaining search effort, to describe the cur-
rent remaining search space in a list of open nodes and to decompose search in self-
interrupted DFS probes makes it a very dynamic search method, very attractive for
implementing multi-core search.

Acknowledgements We are grateful to the Genotoul (Toulouse) Bioinformatic platform
for providing us computational support for this work.

16 Allouche et al.

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving sat-based weighted maxsat
solvers. In: Proc. of CP 2012 - Québec City, Canada. pp. 86–101 (2012)

2. van den Berg, J., Shah, R., Huang, A., Goldberg, K.: ANA*: Anytime nonparametric A*. In:
Proceedings of Twenty-fifth AAAI Conference on Artificial Intelligence (AAAI-11) (2011)

3. Berthold, T.: Primal heuristics for mixed integer programs. Master’s thesis, Technischen Uni-
versität Berlin (2006), urn:nbn:de:0297-zib-10293

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: ECAI. vol. 16, p. 146 (2004)

5. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consis-
tency revisited. Artificial Intelligence 174(7), 449–478 (2010)

6. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artificial intelligence
171(2), 73–106 (2007)

7. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft Local Con-
sistency in Weighted CSP. In: Proc. of the National Conference on Artificial Intelligence,
AAAI-2006. pp. 22–27 (2006)

8. Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th IJCAI.
Montréal, Canada (1995)

9. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artif. Intell. 146(1), 43–75 (2003)

10. Jégou, P., Terrioux, C.: Combining restarts, nogoods and decompositions for solving csps.
In: Proc. of ECAI 2014, Prague, Czech Republic. pp. 465–470 (2014)

11. Jégou, P., Terrioux, C.: Tree-decompositions with connected clusters for solving constraint
networks. In: Proc. of CP 2014, Lyon, France. pp. 407–423 (2014)

12. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization problems.
In: Principles and Practice of Constraint Programming. pp. 478–492. Springer (2008)

13. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer
to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI. pp. 84–89. Edinburgh,
Scotland (Aug 2005)

14. Lawler, E., Wood, D.: Branch-and-bound methods: A survey. Operations Research 14(4),
699–719 (1966)

15. Lecoutre, C., Saı̈s, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint
programming. Artificial Intelligence 173, 1592,1614 (2009)

16. Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-
optimality. In: Advances in Neural Information Processing Systems. p. None (2003)

17. Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies for mixed
integer programming. INFORMS Journal on Computing 11(2), 173–187 (1999)

18. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. In: Theory
and Computing Systems, 1993., Proceedings of the 2nd Israel Symposium on the. pp. 128–
133. IEEE (1993)

19. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: Proc. of
IJCAI-05, Edinburgh, Scotland, UK. pp. 224–229 (2005)

20. Marinescu, R., Dechter, R.: Best-first AND/OR search for graphical models. In: Proceed-
ings of the National Conference on Artificial Intelligence. pp. 1171–1176. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2007)

21. Otten, L., Dechter, R.: Anytime and/or depth-first search for combinatorial optimization. AI
Communications 25(3), 211–227 (2012)

22. Pearl, J.: Heuristics — Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Comp. (1985)

Hybrid Best-First Search for WCSP 17

23. Pohl, I.: Heuristic search viewed as path finding in a graph. Artificial Intelligence 1(3), 193–
204 (1970)

24. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal
of algorithms 7(3), 309–322 (1986)

25. Sanchez, M., Allouche, D., de Givry, S., Schiex, T.: Russian doll search with tree decompo-
sition. In: IJCAI. pp. 603–608 (2009)

26. Schulte, C.: Comparing trailing and copying for constraint programming. In: Logic Program-
ming, Las Cruces, New Mexico, USA. pp. 275–289 (1999)

27. Stern, R., Kulberis, T., Felner, A., Holte, R.: Using lookaheads with optimal best-first search.
In: AAAI (2010)

28. Terrioux, C., Jégou, P.: Bounded backtracking for the valued constraint satisfaction problems.
In: CP. pp. 709–723 (2003)

