
A Restriction of Extended Resolution for Clause Learning SAT Solvers∗

Gilles Audemard
Univ. Lille-Nord de France

CRIL/CNRS UMR8188
Lens, F-62307, France

audemard@cril.fr

George Katsirelos
Univ. Lille-Nord de France

CRIL/CNRS UMR8188
Lens, F-62307, France

gkatsi@gmail.com

Laurent Simon
Univ. Paris-Sud

LRI/CNRS UMR 8623 / INRIA Saclay
Orsay, F-91405, France

simon@lri.fr

Abstract

Modern complete SAT solvers almost uniformly implement
variations of the clause learning framework introduced by
Grasp and Chaff. The success of these solvers has been theo-
retically explained by showing that the clause learning frame-
work is an implementation of a proof system which is as
poweful as resolution. However, exponential lower bounds
are known for resolution, which suggests that significant ad-
vances in SAT solving must come from implementations of
more powerful proof systems.
We present a clause learning SAT solver that uses extended
resolution. It is based on a restriction of the application of the
extension rule. This solver outperforms existing solvers on
application instances from recent SAT competitions as well
as on instances that are provably hard for resolution, such as
XOR-SAT instances.

Introduction
There has been significant progress in the practice of sat-
isfiability testing in the past decade. The turning point
was the clause learning (CDCL) framework introduced in
GRASP (Marques Silva and Sakallah 1999), as well as
the algorithmic improvements and heuristics proposed in
Chaff (Moskewicz et al. 2001). The reengineering of Min-
isat (Eén and Sörensson 2003) then helped identify the crit-
ical components of modern SAT solvers. The substantial
advantage of CDCL over previous algorithms has been ex-
plained on the theoretical side by showing that not only are
such algorithms not restricted by the weak tree resolution
proof system (Beame, Kautz, and Sabharwal 2004), as was
the case for the DPLL class of algorithms (Davis, Loge-
mann, and Loveland 1962; Bayardo and Schrag 1997), but
they are actually as powerful as unrestricted resolution.

Although current solvers are very effective for instances
generated from formal verification problems (Prasad, Biere,
and Gupta 2005), new instances arising from areas such as
cryptography and bioinformatics (SAT Competition 2009)
have been quite challenging. In order to achieve significant
speed-ups, we propose in this paper to extend the CDCL

∗This work is (partially) supported by ANR UNLOC project:
ANR 08-BLAN-0289-01.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm with the ability to use a more powerful underly-
ing proof system. A natural candidate for this is Extended
Resolution (ER). It involves a conceptually simple addition
to the Resolution system already used in CDCL: the abil-
ity to add arbitrary lemmas to the formula being considered.
Despite this simplicity, ER is as powerful as the most pow-
erful known family of proof systems, Extended Frege Sys-
tems (Urquhart 2001). In fact, no family of instances has
been shown to be hard for ER.

However, there is a significant obstacle in implement-
ing a solver based on ER: choosing the right lemmas to
add to the formula is hard, as the number of choices is
large and there seems to be no guide as to which lemmas
might be relevant. So while ER has been used to construct
short proofs of problems that are hard for RES (e.g., (Cook
1976)), no solver has been proposed that implements it.
There have, however, been several attempts to use alternate
proof systems: for example, BDD-based SAT solvers can
be seen as constructing ER proofs (Sinz and Biere 2006;
Chatalic and Simon 2001), while ER has also been used
to exploit symmetry (Schaafsma, Heule, and van Maaren
2009). The challenge is to design an algorithm and a set
of heuristics that implements unrestricted ER and performs
in practice similarly to CDCL solvers.

In our work, we propose a simple restriction of ER which
reduces the number of choices for new lemmas based on
the proof that has been generated so far. This is a different
approach to those mentioned earlier, as the link to ER is
explicit and may potentially be as powerful as unrestricted
ER. Another innovation of our design is that we treat new
variables as an “any-space” resource similar to clauses: we
extend often but discard unused variables so as not exhaust
the available space or to allow the cost of unit propagation
caused by the new variables to to dominate the runtime.

This paper is organized as follows: we first recall the
background of CDCL solvers, proof systems and extended
resolution. Then, we describe the restriction of ER that we
use and show how it can improve on resolution. We then
describe how this restriction of ER can be efficiently embed-
ded in CDCL solvers. We experimentally show that adding
ER rules to CDCL solvers significantly impoves their per-
formance on large set of challenging benchmarks.



Algorithm 1 Conflict Driven - Clause Learning algorithm
1: procedure CDCL(φ)
2: loop
3: Propagate
4: if Clause C is FALSE then
5: C′ = AnalyzeConflict(C)
6: if C′ = ∅ then
7: Report UNSAT and exit
8: Store C′

9: Backtrack until C′ is not FALSE
10: else
11: if All variables are assigned then
12: Report SAT and exit
13: Pick a branching literal l
14: Assert l in a new decision level

Background
The SAT problem consists of finding an assignment to all
variables of a propositional formula φ, expressed in con-
juctive normal form (CNF) so that all clauses of φ is sat-
isfied. In particular, the instance φ has n Boolean variables
x1, . . . , xn. For each variable xi, there exist two literals, xi

and xi. We write l for an arbitrary literal and l for its nega-
tion. The CNF formula is a conjunction of disjunctions, and
each disjunction is called a clause. As a matter of conve-
nience, we view a CNF formula as a set of clauses and each
clause as a set of literals. We assume the reader is familiar
with the notions of backtracking search and unit propaga-
tion.

In this paper, we deal with CDCL algorithms (Mar-
ques Silva and Sakallah 1999; Moskewicz et al. 2001;
Eén and Sörensson 2003). These complete solvers are ex-
tensions of the well known DPLL procedure. They incor-
porate lazy data structures, backjumping, nogoods, dynamic
heuristics and restarts. Algorithm 1 gives the general scheme
of a CDCL solver. At each step of the main loop, it per-
forms unit propagation (line 3). Then, if a conflict occurs
(line 4), it computes a nogood (also called asserting clause)
by resolution (Zhang et al. 2001) (line 5) and stores it. It
backjumps (lines 8–9) until the nogood becomes unit and
performs propagation again. This may create a new conflict,
in which case it repeats the backjumping process. If no con-
flict is detected, it branches on a new variable (lines 13–14).
Search finishes when all variables are assigned (lines 11–12)
or when the empty clause is derived (lines 6–7).

Proof systems
A propositional refutation proof system is a polynomial time
algorithm V , such that for all propositional formulas φ, φ is
unsatisfiable iff there exists a string P (a proof of unsat-
isfiability or refutation of φ) such that V accepts the input
(φ, P ). Propositional proof systems have been studied in
proof complexity as one way to resolve the NP vs coNP
problem, as one can show that NP = coNP iff there exists
a polynomially bounded propositional proof system, i.e., for
every unsatisfiable formula φ, the size of the smallest P such
that V accepts (φ, P ) is polynomial in the size of φ (Cook
and Reckhow 1974). Proof complexity provides the tools to

study the size of the proofs admitted by a single proof sys-
tem as well as the relations between different systems. In
the following, we say that a proof system V admits short
proofs for a family of instances I if the size of the minimum
proof grows polynomially with the size of the instances. We
then say that I is easy for V . Conversely, V admits su-
perpolynomially (exponentially) long proofs for a family I
when the size of the minimum proof grows superpolynomi-
ally (exponentially) with the size of the instance and I is
superpolynomially (exponentially) hard for V .

Given two propositional proof systems V1 and V2, we
say that V1 (strongly) p-simulates V2 iff there exists a
polynomial-time computable function f such that V2 accepts
(φ, P ) iff V1 accepts (φ, f(P )). Two proof systems are said
to be polynomially equivalent if they can p-simulate each
other. There exists a superpolynomial (exponential) separa-
tion between V1 and V2 if V1 can p-simulate V2 and there
exists a family of instances I that is easy for V1 and super-
polynomially (exponentially) hard for V2.

The most widely used propositional proof system is
RES (Robinson 1965). A proof in RES is a sequence of
clauses C1, . . . , Cm, Cm+1, . . . , Cs = 2, where 2 is the
empty clause. The clauses C1, . . . , Cm are the formula φ.
Clauses after that are produced using the resolution rule.
Specifically, the clause Ck is generated from the clauses Ci

and Cj , where i < j < k, iff there exists a literal l with
Ci ≡ l ∨ α, Cj ≡ l ∨ β, Ck ≡ α∨ β and l ∈ α =⇒ l /∈ β.
In this case, we write Ck = Ci ⊗l Cj and call Ck the resol-
vent of Ci and Cj . While not necessary for either complete-
ness or succinctness, RES often contains the weakening rule
which allows us to derive Ck ≡ α ∨ β from Ci ≡ α, where
i < k and l ∈ α =⇒ l /∈ β.

The trace of execution of a CDCL solver can itself be
seen as a proof of unsatisfiability. In fact, the operation
of CDCL solvers has been formalized as a proof system
in a series of papers (Beame, Kautz, and Sabharwal 2004;
Van Gelder 2005; Hertel et al. 2008; Pipatsrisawat and Dar-
wiche 2009), and this proof system has been shown to p-
simulate RES. More precisely, (Hertel et al. 2008) showed
that CDCL p-simulates RES if it is allowed to perform some
preprocessing (called effectively p-simulation (Hertel, Her-
tel, and Urquhart 2007)), while (Pipatsrisawat and Darwiche
2009) showed that CDCL with restarting p-simulates RES.
This is significant because all previous SAT algorithms, in-
cluding DPLL, are known to be exponentially weaker than
resolution. For example, DPLL can be p-simulated by a re-
striction of resolution called tree resolution, which is only
allowed to use a non-input clause once to derive new clauses,
and which is exponentially weaker than RES.

Unfortunately, RES has its own limitations. Many kinds
of reasoning, such as counting and modulo counting cannot
be efficiently performed using resolution. This has led to the
discovery of several families of instances which were proven
to be exponentially hard for RES. The first family for which
exponential lower bounds were shown is instances which en-
code the pigeonhole principle (Haken 1985), followed by
many others and a more general result (Ben-Sasson and
Wigderson 2001). These limitations suggest that significant
improvement in the performance of SAT solvers must come



by implementing solvers which cannot be p-simulated by
resolution. This is the aim of this paper.

Extended Resolution
Extended resolution (ER) (Tseitin 1983) is a generaliza-
tion of resolution with one additional rule: at any point,
a fresh variable y (one that does not appear in φ) may
be introduced along with the clauses that encode y ⇔
l1 ∨ l2 for any pair of literals l1 and l2 of φ. A proof in
ER is then a sequence C1, . . . , Cm, {C|E}m+1, . . . , Cs =
2, where Ci is a resolution step and Ei is an extension
step. In fact, an ER refutation can introduce all variables
in the beginning and then proceed as a resolution proof
over the extended formula, so the proof can be written as
C1, . . . , Cm, Em+1, . . . , Em+N , Cm+N+1, . . . , Cs = 2.

Although it is a seemingly simple extension of RES, ER
is as powerful as Extended Frege Systems (Urquhart 2001),
for which no lower bounds are currently known. In fact it
has been demonstrated that ER can naturally capture the in-
ductive arguments that are used to refute formulas that are
hard for RES (Cook 1976; Krishnamurthy 1985).

Despite the apparent simplicity of ER and its similarity
to RES, no solver has been proposed so far that is based on
ER. The reason for this is that it is hard to devise a heuristic
that introduces variables that are likely to help find a short
refutation. We propose a particular view of the reason why
ER can help produce shorter proofs. We will then attempt to
use this view to design heuristics that guide a CDCL solver
to introduce fresh variables during search.

Suppose l1 and l2 are literals of different variables and
we have derived in our proof the clauses Ci = l1 ∨ α and
Cj = l2 ∨ α. Further suppose that these clauses are each
resolved with the same sequence of clauses Cm1 , . . . , Cmk

to derive C ′i = l1 ∨ β and C ′j = l2 ∨ β. In this case, we
claim that it can be beneficial to extend the formula with the
variable x ⇔ l1 ∨ l2. Then, we can resolve Ci and Cj with
x ∨ l1 ∨ l2 to get Ck = x ∨ α. The clause Ck can then
be resolved with Cm1 , . . . , Cmk

to derive x ∨ β. Thus, any
steps that are common in the derivations of C ′i and C ′j will
not be replicated, thereby compressing the proof.

In fact, we can generalize this argument. Suppose the
clauses Ci and Cj differ in more than l1 and l2 but are in-
stead of the form Ci = l1 ∨ α ∨ β and Cj = l2 ∨ α ∨ γ,
where α ∨ β ∨ γ is not a tautology. If there exists a se-
quence of clauses Cm1 , . . . , Cmk

such that Ci and Cj are
both resolved with Cm1 , . . . , Cmk

to derive C ′i = l1 ∨ δ and
C ′j = l1 ∨ δ where β ⊆ δ and γ ⊆ δ, we can again apply the
transformation outlined above to avoid replicating the reso-
lution sequence Cm1 , . . . , Cmk

.
Also note that in this scheme, the clauses Ci and Cj need

not be input clauses but can be derived clauses. This is im-
portant from a practical point of view, because it allows us
to introduce variables not only by examining the input for-
mula, but also by examining the resolution proof, as it is
being generated. The following formalizes this scheme as a
proof system.

Definition 1 (Local Extended Resolution) LER is the

propositional proof system which includes the resolution
rule as well as the extension rule that, at step k we can
introduce the variable z ⇔ l1 ∨ l2 if there exist clauses
Ci ≡ l1 ∨ α and Cj ≡ l2 ∨ β with i < k, j < k, where α
and β are disjunctions such that l ∈ α =⇒ l /∈ β.

The difference of LER from ER is that it requires clauses
of the appropriate form to be derived before a variable can
be introduced. Such clauses might not be derived at all in
an ER proof. The advantage of LER is that proofs in it are
much less unpredictable than those in ER. In particular, each
introduced variable is related to the proof that is being gener-
ated. This mitigates somewhat the non-deterministic nature
of the proof system.

The restriction of LER is not too severe. In fact, it is
easy to verify that some ER proofs of problems that are hard
for RES can be easily transformed into LER proofs, includ-
ing Cook’s ER refutation of the pigeonhole principle. This
shows that LER is exponentially more powerful than resolu-
tion. On the other hand, it may not always be easy to derive
the two clauses that are needed for each extended variable
to be introduced. This can make the minimum LER proof
larger than the minimum ER proof. We do not currently
know whether there exist instances that are hard for LER
but easy for ER or whether LER can p-simulate ER.

Given that CDCL solvers have been described as resolu-
tion engines (Huang 2007), we can empirically claim that we
have enough information during the execution of a CDCL
solver to implement a formalism like LER and extend the
formula with variables that are likely to help shorten the
proof.

This insight is exploited in the next section to describe a
particular implementation of this idea.

A CDCL solver based on local extensions
The scheme described in the previous section restricts the
number of pairs of literals that need to be considered for ex-
tension. However, even under this restriction, the number
of choices in many problems is too large to consider sys-
tematically extending the formula with all candidates. We
therefore design heuristics here whose main aim is to be
conservative: we aim to maintain the good performance of
CDCL solvers on application instances, even at the cost of
not achieving all the benefits of the LER system in practice,
and failing to solve tricky formulas efficiently. This means
that we need to control very strictly the number of fresh vari-
ables that we will add.

In general, most of the reasoning performed by CDCL
solvers is during conflict analysis. This includes clause
learning, as pointed out in Algorithm 1, but also updates of
heuristic scores and evaluation restart strategies. This is also
the logical choice for detecting candidate pairs of literals, as
we can examine each clause as it is produced.

Fast (but incomplete) detection of interesting pairs. The
most important restriction and main difference of our imple-
mentation to the LER system is that we restrict our attention
to pairs of clauses of the form l1 ∨α, l2 ∨α. This restriction



can potentially reduce the power of the proof system imple-
mented by our solver. However, in the alternative case, the
number of extensions performed would then be too large.
Then, the task of keeping the number of extended variables
manageable would be more challenging.

A number of further restrictions were made to the appli-
cation of the extension rule. Intuitively, the heuristics of
CDCL solvers are tuned to keep the solver exploring the
same search space despite restarts, so it is likely that pairs
of clauses that match the scheme l1 ∨ α, l2 ∨ α will be dis-
covered close to each other. Therefore, it would be sufficient
to examine only a small window of recent clauses to detect
many such pairs of clauses. In fact, we push this reason-
ing to its extreme and set the window size to 1: we consider
only successive learnt clauses. We can then assume that the
literals l1 and l2 are in fact the UIP literals discovered dur-
ing conflict analysis. Thus, our candidate generation scheme
is: if successive clauses learnt by the solver have the form
l1∨α, l2∨α, we introduce the variable z ⇔ l1∨ l2, if it has
not already been introduced.

Successive applications of the ER rule. If n successive
learnt clauses have the form li ∨ C (1 ≤ i ≤ n) then we
add the rules z1 ⇔ l1 ∨ l2, but also all zi ⇔ li ∨ li+1 for
2 ≤ i < n. Another alternative may be to add zi ⇔ zi∨li+1

instead of zi ⇔ li ∨ li+1 but we found empirically that this
performed worse.

Extended variables in new clauses. As soon as a fresh
variable z ⇔ l1 ∨ l2 is introduced, we have to ensure that
we replace new clauses in the remaining proof that match
the form l1 ∨ l2 ∨ β with z ∨ β. This systematic reduction
is important because this allows the new variable z to be
propagated even when the learnt clause l1 ∨ l2 ∨ β would
not have been. For example, if all literals in β are false, the
clause l1 ∨ l2 ∨ β is not unit, but z ∨ β is. Empirically, we
discovered that if we do not perform this reduction step, then
z will almost never occur in conflict analysis, so z will not
be used in the resolution proof that is produced. Note that
we restrict the application of this reduction step to clauses
learnt after we introduce z, mostly for efficiency.

To support this reduction step, we maintain a hash table of
pairs of extended literals, and we probe the hash table each
time a conflict is performed to replace pairs of literals by
their extended variable. It has to be noticed that the use of
such a hash table implies a special case were the reduction
introduces a choice. Suppose we learn the clause C ≡ l1 ∨
l2 ∨ l3 ∨ β and we have previously introduced the two new
variables z1 and z2 such that z1 ⇔ l1 ∨ l2 and z2 ⇔ l2 ∨
l3. Then our iterative procedure of reduction will have to
make a choice between the two clauses C1 ≡ z1 ∨ l3 ∨ β or
C2 ≡ l1 ∨ z2 ∨β. This choice is handled by prefering to use
extended variables with a higher VSIDS score at the time of
the reduction. Note that although this manipulation is crucial
for the performance of the solver, it is only a heuristic that
encourages resolution on introduced variables, and does not
affect the theoretical properties of the solver.

Contrary to the case of clauses of the form l1∨l2∨β, there
is no need to compress any new pair of clauses of the form
l1 ∨ C, l2 ∨ C by substituting them with the single clause
z ∨ C. If either l1 or l2 are propagated according to the two
previous clauses, then z will be propagated, and thus poten-
tially used during conflict analysis (and thus resolution).

Reducing unintended side effects. At each conflict, if an
LER rule is triggered, we may add the 3 clauses z ∨ l1 ∨
l2, z ∨ l1 and z ∨ l2. We need to ensure at this stage that
no new clause is made unit at a higher decision level than
the current backjump level, otherwise we have to jump back
to that level and update the implication stack accordingly.
However, because of our restrictions, this case will never
happen. Indeed, consider again two successive learnt clauses
l1 ∨ α and l2 ∨ α. We add the three clauses that encode
z ⇔ l1 ∨ l2. Then, because l1 and l2 were UIP literals,
z ∨ l1 ∨ l2 will be TRUE and z will be propagated to TRUE

according to z∨l1. Hence, our restriction over detected pairs
of clauses also ensures that the desirable property of learnt
clauses that they assert a literal on backtracking still holds
even when introducing new variables and additional clauses
at a given conflict. In particular, we don’t force the CDCL
solver to restart earlier, or to particularly reorder its decision
dependencies.

Removing unused extended variables In CDCL solvers,
the learnt clause database is regularly reduced, in order to
keep the cost of unit propagation from dominating the run-
time. The same argument applies for introduced variables
and their corresponding clauses. We keep track of clauses
that encode the LER rule for any given variable for future
deletion. Then, whenever we reduce the database of learnt
clauses, we also remove those extended variables that have
a low VSIDS score, indicating that they are not used in the
resolution proof.

Empirical evaluation
In this section, we report on the empirical evaluation of our
ideas with implementations based on two CDCL solvers,
MINISAT and GLUCOSE. The modified versions embedding
our LER mechanisms are reported here as MINISATER and
GLUCOSER, respectively. We also compare against PRE-
COSAT, the other winner of the application track of the last
competition, along with GLUCOSE. Finally, note that our
version of MINISAT slightly differs from the publicly avail-
able one, as we changed the restart strategy to follow the
Luby sequence (starting at 32) and also added phase saving.
Both modifications improve the performance of MINISAT
on industrial problems, and are now used in most CDCL
solvers.

We report results on two families of benchmarks: (1) in-
dustrial/application benchmarks from the SAT07 and SAT09
competitions (SAT Competition 2009) and (2) some addi-
tional benchmarks known to be hard for resolution-based
algorithms (pigeonhole problems and Urquhart problems
(Urquhart 1987)) or experimentally proven hard for recent



SAT 07 SAT 09
PRECOSAT 167 (91 - 76) 211 (129 - 82)
GLUCOSE 185 (111 - 74) 211 (132 - 79)
GLUCOSER 191 (113 - 78) 213 (133 - 80)
MINISAT 142 (81 - 61) 190 (118 - 72)
MINISATER 146 (85 - 61) 198 (123 - 75)

Table 1: Performance of solvers with and without the LER
rule. Instances come from the application category of the
SAT 2007 (234 instances) and SAT 2009 (292 instances)
competitions. For each solver, we report the number of
solved instances with, in parenthesis, the number of UNSAT
and SAT instances.

solvers. We used a farm of quad-core Intel XEON X5550
– 2.66 GHz with 32 GB RAM. Time limit is set to 5000
seconds. Results are reported in seconds.

The tunable parameters of our solver were experimentally
set as follows: we only introduce variables when the pair of
most recently learned clauses have size at least 4. Every
time the clause database is reduced, we attempt to remove
half the introduced variables.

Results from previous competitions
Table 1 summarizes our results on industrial benchmarks
from previous contests. Those sets of benchmarks are re-
ally hard, and even a small increase in the number of solved
instances is a clear win (let us point out that PRECOSAT and
GLUCOSE were ex-aequo in the number of solved bench-
marks in the category SAT +UNSAT). The challenge was
here to increase the reasoning power of CDCL solvers while
keeping their overall good performance.

Results on known “hard” instances
Table 2 highlights results obtained from two sets of chal-
lenging benchmarks. The first are instances that are known
hard for resolution, encodings of the pigeonhole principle
and the Urquhart instances. We notice that on pigeonhole
problems, MINISATER does not improve on the base solver,
and in fact MINISAT is the best solver for these instances.
However, we offer two counterpoints here. We attempted to
generate an easy instance for MINISAT by generating not
only the clauses that encode the pigeonhole principle but
also all the extended variables that are used in a minimal
resolution refutation of PHP (Cook 1976). Somewhat sur-
prisingly, these instances were hard for MINISAT as well.
This implies that in this case extending the formula is not
enough. Instead, we also need to modify the branching
heuristic. However, this runs counter to our goal of main-
taining the performance of the base solver in application in-
stances. The second counterpoint that we offer is that MIN-
ISATER and GLUCOSER improve significantly on MINISAT
and GLUCOSE when solving instances that encode the func-
tional pigeonhole principle. Unfortunately, even in this case
the performance of the solver does not scale polynomially
with the size of the problem.

The picture is more clearly positive in Urquhart instances.
MINISATER and GLUCOSER solve instances that appear

well out of reach of the other solvers, even if it seems that
the performance does not scale polynomially.

The most important part of Table 2 is a set of hard bench-
marks from previous competitions, most of them unsolved
during the given contest. These clearly demonstrates the
ability of GLUCOSER, and to a lesser extent MINISATER, to
solve instances that are out of the reach of previous solvers.

Some important points to note in these results is that first,
the solver introduces a large number of new variables –
roughly one for every 1000 conflicts. Second, (not shown
in the table) the solver branches on the new variables fre-
quently. This means that they have a high VSIDS score,
which in turn means that they are used in resolution, thus
the proof produced is an LER proof, not simply a resolu-
tion proof. This implies firstly that even our restriction of
the LER rule finds enough learned clauses to extend the
formula significantly, and secondly that LER admits signifi-
cantly smaller proofs for these instances.

Conclusions
We have proposed a restriction of extended resolution with
two important advantages over unrestricted ER: first, the
variables that are introduced are related to the proof as it
gets generated. Second, the number of pairs of literals that
are candidates for extension is significantly reduced. Both
of these advantages mean that it is easier to design heuris-
tics for a solver based on this proof system. We built such a
solver and showed that it outperfoms state-of-the-art CDCL
solvers on benchmarks from recent competitions. Our im-
plementation was based on MINISAT and GLUCOSE, but
the techniques we describe can be embedded easily in any
CDCL solver.

Several open questions remain from this work. From the
practical point of view, we would like to design heuristics
for more aggressively introducing new variables without in-
troducing a significant runtime overhead. This would mean
considering more pairs of clauses beyond the window of
the last few conflicts, but also generalizing the candidates
to clauses that do not match exactly. From the theoretical
point of view, we would like to determine exactly where
LER places in the proof complexity hierarchy. If it can be
shown that it p-simulates ER, this would be a significant step
towards understanding the power of ER and harnessing it in
SAT solvers.
Acknowledgements. We thank Nicolas Prcovic for sug-
gesting “pre-extending” pigeonhole instances.

References
Bayardo, R. J., and Schrag, R. C. 1997. Using csp look-
back techniques to solve real-world sat instances. In Pro-
ceedings of the Fourteenth National Conference on Artifi-
cial Intelligence, 203–207.
Beame, P.; Kautz, H.; and Sabharwal, A. 2004. Towards
understanding and harnessing the potential of clause learn-
ing. Journal of Artificial Intelligence Research 22:319–
351.
Ben-Sasson, E., and Wigderson, A. 2001. Short proofs are
narrow—resolution made simple. J. ACM 48(2):149–169.



benchmark SAT ? PRECOSAT GLUCOSE GLUCOSER MINISAT MINISATER
hole-11 UNSAT 90s / 1,314 78s / 552 127s / 848 / 930 7s / 148 20s / 359 / 2195
hole-12 UNSAT 963s / 8,112 1,167s / 4,588 208s / 1,333 / 1,334 40s / 405 363s / 1,825 / 6,927
Urq3 5 UNSAT 142s / 4,570 21s / 791 8s / 235 / 1,478 398s / 2,119 10s / 318 / 2,702
Urq4 5 UNSAT – 3,106s / 28,181 26s / 527 / 3,103 – 11s / 333 / 3,191
Urq5 5 UNSAT – – 545s / 5,021 / 7,298 – 107s / 1,488 / 7,503
aloul-chnl11-13 UNSAT – – 310s / 1,794 / 1,233 130s / 808 88s / 859 / 4,665
SAT dat.k75† UNSAT – – 614s / 5,544 / 23,042 – –
dated-5-19-u† UNSAT – – 3,127s / 9,063 / 9,202 – –
9dlx vliw at b iq8† UNSAT – 4,322s / 6,672 3,609s / 4,733 / 14,490 – –
sortnet-8-ipc5-h19-sat† SAT 3,395s / 2,179 – 3,672s / 7,147 / 6,921 – –
vmpc 34 SAT – 2,616s / 15,833 1,565s / 10,022 / 31,576 – –
rbcl xits 08 UNSAT 1,286s / 3,600 – 3,067s / 8,069 / 8,916 – –
simon-s02b-k2f-gr-rcs-w8 UNSAT – – 3,622s / 7,904 / 13,567 – 3,797s / 5,121 / 30,890

Table 2: Results on a selection of challenging instances. For each instance, we report whether it is satisfiable, the time needed
by each solver to solve it, the number of conflicts (in thousands) and the number of extended vars (after the ”/” , if extended
resolution is used), or ’–’ if the solver timed out. Instances marked with †were not solved by any solver in the 07 and 09
competition. Other problems were solved by at most 5 solvers.

Chatalic, P., and Simon, L. 2001. Multiresolution for SAT
checking. International Journal on Artificial Intelligence
Tools 10(4):451–481.
Cook, S. A., and Reckhow, R. A. 1974. On the lengths of
proofs in the propositional calculus (preliminary version).
In STOC, 135–148. ACM.
Cook, S. A. 1976. A short proof of the pigeon hole princi-
ple using extended resolution. SIGACT News 8(4):28–32.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communications
of the ACM 5:394–397.
Eén, N., and Sörensson, N. 2003. An extensible SAT-
solver. In proceedings of SAT, 502–518.
Haken, A. 1985. The intractability of resolution. Theoret-
ical Computer Science 39:297–308.
Hertel, P.; Bacchus, F.; Pitassi, T.; and Gelder, A. V. 2008.
Clause learning can effectively p-simulate general proposi-
tional resolution. In Proceedings of the 23rd AAAI Confer-
ence on Artificial Intelligence (AAAI-2008), 283–290.
Hertel, A.; Hertel, P.; and Urquhart, A. 2007. Formalizing
dangerous sat encodings. In Proceedings of SAT. 159–172.
Huang, J. 2007. The effect of restarts on the efficiency
of clause learning. In Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence, 2318–
2323.
Krishnamurthy, B. 1985. Short proofs for tricky formulas.
Acta Informatica 22(3):253–275.
Marques Silva, J. P., and Sakallah, K. A. 1999. GRASP—
a search algorithm for propositional satisfiability. IEEE
Transactions on Computers 48(5):506–521.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient SAT solver.
In Proceedings of the 39th Design Automation Conference,
530–535.
Pipatsrisawat, K., and Darwiche, A. 2009. On the power of

clause-learning SAT solvers with restarts. In Gent, I. P., ed.,
Principles and Practice of Constraint Programming - CP
2009, volume 5732. Berlin, Heidelberg: Springer Berlin
Heidelberg. chapter 51, 654–668.
Prasad, M.; Biere, A.; and Gupta, A. 2005. A survey of
recent advances in SAT-based formal verification. journal
on Software Tools for Technology Transfer 7(2):156–173.
Robinson, J. A. 1965. A machine oriented logic based on
the resolution principle. Journal of the ACM 12(1):23–41.
2009. http://www.satcompetition.org.
Schaafsma, B.; Heule, M.; and van Maaren, H. 2009.
Dynamic symmetry breaking by simulating zykov contrac-
tion. In Kullmann, O., ed., Theory and Applications of Sat-
isfiability Testing - SAT 2009, volume 5584. Berlin, Hei-
delberg: Springer Berlin Heidelberg. chapter 22, 223–236.
Sinz, C., and Biere, A. 2006. Extended resolution proofs
for conjoining bdds. In Grigoriev, D.; Harrison, J.; and
Hirsch, E. A., eds., CSR, volume 3967 of Lecture Notes in
Computer Science, 600–611. Springer.
Tseitin, G. 1983. On the complexity of proofs in propo-
sitional logics. In Siekmann, J., and Wrightson, G., eds.,
Automation of Reasoning: Classical Papers in Computa-
tional Logic 1967–1970, volume 2. Springer-Verlag.
Urquhart, A. 1987. Hard examples for resolution. JACM
34(1):209–219.
Urquhart, A. 2001. The complexity of propositional
proofs. 332–342.
Van Gelder, A. 2005. Pool resolution and its relation to
regular resolution and DPLL with clause learning. In Logic
for Programming, Artificial Intelligence, and Reasoning,
Lecture Notes in Computer Science. chapter 40, 580–594.
Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik, S.
2001. Efficient conflict driven learning in a boolean satisfi-
ability solver. In Proceedings of IEEE/ACM International
Conference on Computer Design (ICCAD), 279–285.


