
Using Minimal Correction Sets to more
Efficiently Compute Minimal Unsatisfiable Sets

Fahiem Bacchus1 and George Katsirelos2

1Department of Computer Science 2MIAT, INRA
University of Toronto Toulouse, France

Toronto, Ontario, Canada george.katsirelos@toulouse.inra.fr

fbacchus@cs.toronto.edu

Abstract. An unsatisfiable set is a set of formulas whose conjunction
is unsatisfiable. Every unsatisfiable set can be corrected, i.e., made sat-
isfiable, by removing a subset of its members. The subset whose removal
yields satisfiability is called a correction subset. Given an unsatisfiable
set F there is a well known hitting set duality between the unsatisfiable
subsets of F and the correction subsets of F : every unsatisfiable subset
hits (has a non-empty intersection with) every correction subset, and,
dually, every correction subset hits every unsatisfiable subset. An im-
portant problem with many applications in practice is to find a minimal
unsatisfiable subset (mus) of F , i.e., an unsatisfiable subset all of whose
proper subsets are satisfiable. A number of algorithms for this important
problem have been proposed. In this paper we present new algorithms for
finding a single mus and for finding all muses. Our algorithms exploit in
a new way the duality between correction subsets and unsatisfiable sub-
sets. We show that our algorithms advance the state of the art, enabling
more effective computation of muses.

1 Introduction

A set of formulas is said to be unsatisfiable if the conjunction of its members
has no model (is unsatisfiable). A minimal unsatisfiable set (a mus) has the
additional property that every proper subset of it is satisfiable.

Given an unsatisfiable set F the task of computing a mus contained in F
(a mus of F) has long been an important problem for a range of verification
applications related to diagnosis and debugging, e.g., program type debugging,
circuit diagnosis, production configuration (see [6]).

muses have become even more important with the increasing applications
of sat based approaches in system analysis and verification. In [24] a number
of ways that muses can be used in sat based bounded model checking (bmc)
are presented. For example, a mus might tell the user that the property being
checked did not play a role in deriving unsat , thus indicating that the system
specification is overconstrainted. muses also play an important role in applica-
tions that exploit unsatisfiable sets (sometimes called unsatisfiable cores). As
discussed in [6] many of these application can benefit significantly from com-
puting muses rather than just using the default unsatisfiable core returned by

the solver. Formal equivalence checking, proof-based abstraction refinement, and
boolean function bi-decomposition are three important applications in which
computing a mus has proved to be beneficial [6]. Belov et al. [4] present some
more recent results quantifying the benefits of computing muses in the hybrid
counterexample/proof-based abstraction engine gla implemented in the abc
verification tool [9]. A more recent application of muses arises in the Franken-
Bit verifier [13] where muses are used to compute invariants [14].

With this range of applications it is not surprising that there has been an
extensive amount of research into developing more effective algorithms for com-
puting muses, e.g., [6, 5, 12, 19, 15, 20, 21] (see [6] for a more extensive list).

In this paper we continue this line of research and present new algorithms for
computing muses. Our new algorithms exploit the well known hitting set dual-
ity between the unsatisfiable subsets of an unsatisfiable set F and the correction
subsets of F . Our algorithms work in particular with minimal subsets—the du-
ality also holds between minimal unsatisfiable subsets and minimal correction
subsets. This duality has been exploited before to compute all muses in the
camus system [17]. However, in camus the first step was to compute the set
of all mcses, AllMcses, from which all muses can be extracted by finding all
minimal hitting sets of AllMcses. Unfortunately in practice it is often impossible
to complete the first step of computing AllMcses.

We find new ways to exploit the mus/mcs connection in order to compute a
single mus and to incrementally compute all muses. Our method does not require
computing AllMcses. We show empirically that our new algorithms advance the
state of the art in mus computation, and thus can potentially enhance a range
of applications in formal methods that rely on computing muses.

2 Background

Let T be some background theory and F be a set of T-formulas such that the
conjunction of these formulas is T-unsat , i.e., their conjunction has no T-model .
In many applications it is useful to identify a smaller subset of F that is T-unsat .
In practice, if the T-sat status of various subsets of F can be effectively deter-
mined, then finding a minimal subset of F that is T-unsat is often achievable.

In this paper we will always regard a set of formulas F as representing the
conjunction of its members. So, e.g., F is T-unsat means

∧
f∈F f is T-unsat .

Definition 1 (MUS) An unsatisfiable subset U of F is a subset of F that is
T-unsat . A Minimal Unsatisfiable Set (mus) of F is a unsatisfiable subset
M ⊆ F that is minimal w.r.t. set inclusion. That is, M is T-unsat and every
proper subset S (M , S is T-sat .

Definition 2 (MSS) A satisfiable subset of F is a subset of F that is T-sat .
A Maximal Satisfiable Subset (mss) of F is a satisfiable subset S ⊆ F that
is maximal w.r.t set inclusion. That is, S is T-sat and for every proper superset
U) S such that U ⊆ F , U is T-unsat .

Definition 3 (MCS) A correction subset of F is a subset of F whose comple-
ment in F is T-sat . A Minimal Correction Subset (mcs) of F is a correction
subset C ⊆ F that is minimal w.r.t. set inclusion, i.e., F \ C is an mss of F .

Definition 4 A formula f ∈ F is said to be critical (or a transition formula
[7]) for F when F is T-unsat and F − {f} is T-sat .

Intuitively, a mus is an unsatisfiable set that cannot be reduced without
causing it to become satisfiable; a mss is a satisfiable set that cannot be added
to without causing it to become unsatisfiable; and an mcs is a minimal set of
removals from F that causes F to become satisfiable.

A critical formula for F is one whose removal from F causes F to become
satisfiable. It should be noted if f is critical for F then (a) f must be contained
in every mus of F and (b) {f} is an mcs of F . Furthermore, it can be observed
that M is a mus if and only if every f ∈M is critical for M . Note that a formula
f that is critical for a set S is not necessarily critical for a superset S′ ⊃ S. In
particular, S′ might contain other muses that do not contain f .

Duality. There is a well known hitting set duality between muses and mcses
that to the best of our knowledge was first presented formally by Reiter [23] in
the context of diagnosis problems.

A hitting set H of a collection of sets C is a set that “hits” every set in C in the
sense that it has a non empty intersection with each such set: ∀C ∈ C.H∩C 6= ∅.
A hitting set H is minimal (or irreducible) if no subset of H is a hitting set.

Let AllMuses(F) (AllMcses(F)) be the set containing all muses (mcses) of
F . Then Reiter’s result can be recast to show that M ∈ AllMuses(F) iff M is
a minimal hitting set of AllMcses(F), and dually, C ∈ AllMcses(F) iff C is a
minimal hitting set of AllMuses(F). Intuitively, we can see that if a mus M fails
to hit an mcs C, then M ⊆ F−C, i.e., M is a subset of a satisfiable set and
hence can’t be unsatisfiable. Similarly, if an mcs C fails to hit a mus M then
F−C ⊇ M is a superset of an unsatisfiable set and hence can’t be satisfiable.
It is also not hard to see that the duality between mcses and muses also holds
for non-minimal sets. That is, every correction subset (not necessarily minimal)
hits all unsatisfiable subsets and vice versa.

Although we have discussed muses and mcses in the context of a fixed
set of formulas F we will also be working with subsets of F . It is useful to
point out that if F ′ ⊆ F , then AllMuses(F ′) ⊆ AllMuses(F) and in general
AllMuses(F ′) 6= AllMuses(F). Hence, if f is critical for F it is critical for all
unsatisfiable subsets of F (f is critical iff it is contained in every mus).

An mcs C ′ of F ′ ⊂ F is not necessarily an mcs of F , however C ′ can always
be extended to an mcs C of F . In particular, we can add the formulas of F \F ′

to F ′ one at a time. If C ′ is no longer a correction subset of F ′ ∪ {f} we add f
to C ′. At each stage the augmented C ′ is an mcs of the augmented F ′, and at
the end C ′ has been extended to be an mcs of F . Since we have not seen this
observation previously in the literature, and its proof is illustrative of concepts
needed in our algorithms, we provide a proof here.

Proposition 1 Let C ′ ∈ AllMcses(F ′) and f ∈ F \ F ′. If C ′ is a correction
subset of F ′ ∪ {f} it is an mcs of F ′ ∪ {f}, and if it is not then C ′ ∪ {f} is an
mcs of F ′ ∪ {f}.

Proof. C ′ is a minimal correction subset of F ′ if and only if for every a ∈ C ′

there exists a mus M ∈ AllMuses(F ′) such that M ∩ C ′ = {a}. That is, M
is only hit by a, hence C ′ will no longer be a correction subset if we remove
a. M serves as a witness that a is needed in C ′, and C ′ is minimal iff every
member of C ′ has a witness. Since AllMuses(F ′) ⊆ AllMuses(F ′ ∪ {f}), the
witnesses for C ′ remain valid after adding f to F ′ and if C ′ corrects F ′ ∪ {f}
it must be an mcs of F ′ ∪ {f}. If C ′ does not correct F ′ ∪ {f} then there are
some muses in AllMuses(F ′ ∪ {f}) that are not hit by C ′. But since C ′ hits
all muses in AllMuses(F ′) these un-hit muses must contain f . So C ′ ∪ {f} is a
correction subset of F ′ ∪ {f}. Furthermore, any of these new muses can serve
as a witness for f , and for every a ∈ C there is a witness for a in AllMuses(F ′)
which cannot contain f . Hence, these witnesses remain valid when f is added to
C ′, and C ′ ∪ {f} is an mcs of F ′ ∪ {f}.

Although we have given the above definitions in terms of an arbitrary theory
T, in the rest of this paper we will work with T being ordinary propositional
logic (Prop) and F being a set of clauses. In particular, our algorithms assume
access to some basic facilities of modern sat solvers. Some of these facilities are
also available in modern smt solvers, and thus some of our ideas could be lifted
to theories handled by smt solvers.

3 Prior MUS Algorithms

Current state-of-the-art algorithms for computing muses have converged on ver-
sions of Algorithm 1.

Alg. 1 operates on a working set of clauses W = (unkn ∪ crits) with the
clauses of unknown status, unkn, initially equal to F . In the main while loop
the status of each clause in unkn is resolved and its size reduced until unkn = ∅.
At this point W consists only of a set of clauses, crits, all of which are known
to be critical for W . As observed above this implies that W = crits is a mus.

The input assumption is that W = F is unsat , and this condition is an
invariant of the algorithm. Each iteration of the main loop selects a clause of
unknown status c ∈ unkn and tests the satisfiability of W \ {c}. We have that
W \ {c} |= ¬c, as W has no models. Hence, we can make the sat test of W \ {c}
more efficient by adding the implied ¬c (since c is a clause, ¬c is a set of unit
clauses which are particularly advantageous for a sat solver).

If W \ {c} is sat then we know that c is critical for W (and for all subsets of
W that the algorithm subsequently works with). In this case we can additionally
find more critical clauses by applying the technique of recursive model rotation
(rmr) [7, 25]. Note that the satisfying model π returned is such that π |= (crits∪
unkn)\{c} and π 6|= c, which is the condition required for rmr to work correctly.

Algorithm 1: findmus
(
F
)
: Current state-of-the-art algorithm for com-

puting a mus

Input: F an unsatisfiable set of clauses
Output: a mus of F

1 crits ← ∅
2 unkn ← F
3 while unkn 6= ∅ do
4 c← choose c ∈ unkn
5 unkn ← unkn \ {c}
6 (sat?,π,κ) ← SatSolve(crits ∪ unkn ∪ {¬c})

/* SatSolve returns the status (sat or unsat), a model π if sat, or an unsat
subset κ of the input if unsat. */

7 if sat? then
8 crits ← crits ∪ {c}
9 C ← ermr (c, crits, unkn, π)

10 crits ← crits ∪ C
11 unkn ← unkn \ C
12 else
13 if κ ⊆ (crits ∪ unkn) then
14 unkn ← unkn ∩ κ
15 return crits

Every newly identified critical clause is removed from unkn and added to crits
thus reducing the number of iterations of the main loop.

If W \ {c} is unsat then there is some mus of W that does not contain c.
The algorithm then focuses on finding one of these muses by removing c from
W . Note that there might also be muses of W that do contain c so the final
mus found depends on the order in which clauses of unkn are tested. One final
optimization is that we can obtain an unsat core, κ, from the sat solver. If that
core did not depend on the added ¬c clauses then we can reduce W by setting
it to κ. In this case it must be that crits ⊆ κ: all the clauses of crits are critical
for W \ {c}. Hence, to make W = κ we simply need to remove from unkn all
clauses not in κ. This optimization is called clause set refinement [21].

Alg. 1 is used in state of the art mus finding algorithms like [8, 21], and these
systems also add a number of other lower level optimizations as described in
[21]. The main difference between these mus finding systems is that some use a
modified sat solver that keeps track of the resolution proof used to derive unsat
[21]—the unsatisfiable subset κ is extracted from that proof—while others use
selector variables for the input clauses and the technique of sat solving under
assumptions to obtain κ [10].

4 MCS based MUS finding

In this section we present our new algorithms for finding muses. Our algorithms
are based on the duality between mcses and muses mentioned in section 2. This
duality has been exploited in previous work, in particular in the camus system
[17]. However, in that prior work the first step was to compute all mcses of the

input formula F , AllMcses(F), after which muses were found by finding minimal
hitting sets of AllMcses(F). This first step is very expensive, and sometimes
cannot be completed since there can be exponential number of mcses. So camus
is not very effective for the task of finding a single mus. In this work we revisit this
duality to arrive at algorithms that do not require an exhaustive enumeration of
all mcses.

4.1 Finding a single MUS

Algorithm 2 is our new algorithm for finding a single mus. Like Alg. 1, it operates
on the working set of clauses W = (unkn ∪ crits) with the clauses of unknown
status, unkn, initially equal to F . In the main while loop a minimal correction
subset of W is computed using Alg. 3. Alg. 3 works to find not just any mcs:
it searches for an mcs contained entirely in unkn. Every clause in the set crits
is critical for W , and thus every clause in crits is a singleton mcs. We are not
interested in finding these mcses. If there is no mcs in unkn it must be the case
that W remains unsat even if all of unkn is removed from it. That is, crits is an
unsatisfiable set all of whose members are critical—it is a mus.

If we do find an mcs, CS , we then choose some clause from it, c, add c to
crits and remove all of CS from unkn. Alg. 3 also returns the satisfying solution,
π it found for W \ CS (verifying that CS is a correction subset). This solution
can be used to find more criticals using rmr. Note that since CS is a minimal
correction subset it must be the case that π 6|= a for every a ∈ CS . Thus,
π |= (crits ∪ unkn) \ {c} and π 6|= c, which is the condition required for rmr to
work correctly. As will be described below we have developed an extension of
standard rmr, em-rmr, that can find even more new criticals.

Clause set refinement can be used within this algorithm. Alg. 3 (find-mcs)
computes an unsatisfiable core whenever |CS | ≥ 1. From this core an unsatis-
fiable set κ ⊆ crits ∪ unkn can be extracted and used as in Alg. 1 to reduce
unkn to unkn ∩ κ. A simpler solution, however, is to do another sat call on the
unsatisfiable set crits ∪ unkn whenever |CS | > 1. In this case the sat solver has
just refuted a closely related formula in find-mcs and can exploit its previously
learned clauses to quickly refute crits ∪ unkn. The core it returns can then be
intersected with unkn. In our experiments, we confirmed that in the vast major-
ity of cases the cost of this step is negligible typically taking less than a second
cumulatively.

However, in those cases where the instance contains only one mus all mcses
will have size 1, and we would never get to perform clause set refinement. We
address this deficiency by forcing a sat call on crits ∪ unkn whenever clause set
refinement has not been performed for some time. The logic of when to do the
sat call and returning a reduced unkn set is encapsulated in the refine-clause-
set subroutine.

Theorem 1. If its input formula F is unsat, find-mcs correctly returns an
mcs of crits ∪ unkn contained in unkn if any exist, em-rmr correctly returns a
set of clauses critical for crits ∪ unkn, and refine-clause-set correctly returns

Algorithm 2: mcs-mus
(
F
)
: Find a mus of F using mcs duality.

Input: F an unsatisfiable set of clauses
Output: a mus of F

1 crits ← ∅
2 unkn ← F
3 while true do
4 (CS , π)← find-mcs(crits, unkn) // Find CS , an mcs contained in unkn.
5 if CS = null then
6 return crits
7 c← choose c ∈ CS
8 crits ← crits ∪ {c}
9 unkn ← unkn \ CS

10 C ← em-rmr (c,crits,unkn, π)
11 crits ← crits ∪ C
12 unkn ← unkn \ C
13 unkn ← refine-clause-set(crits, unkn, |CS | > 1)

an unsatisfiable subset of crits ∪unkn, then Algorithm 2 will return a mus of its
input formula F .

Proof. We show that two invariants hold in the main loop of Alg. 2: (1) crits ∪
unkn is unsat and (2) every clause in crits is critical for crits ∪ unkn.

Alg. 2 terminates when find-mcs is unable to find a correction subset in
unkn. This happens when crits ∪ unkn remains unsat even after all the clauses
of unkn are removed, i.e., when it detects that crits is unsat (see Algorithm 3).
In this case, we know that crits is an unsat set of clauses and from invariant (2)
all of its members are critical, i.e., it is a mus. Hence, the correctness of Alg. 2
follows from the invariants.

Initially crits = ∅ and unkn = F , and F is unsat by assumption. So the
invariants hold at the start of the main loop. Assume that they hold up until the
i−1’th iteration of the main loop. If in the i’th iteration we fail to find an mcs
contained in unkn, then crits is unsat and unchanged from the i−1’th iteration.
So invariant (1) holds and by induction so does invariant (2).

Otherwise, let CS be the mcs returned by find-mcs with CS ⊆ unkn. CS
is an mcs of W = crits ∪ unkn, therefore there is a witness M ∈ AllMuses(W)
for every c ∈ CS with M ∩ CS = {c}. Alg. 2 updates crits to crits ∪ {c} (for
some c ∈ CS) and unkn to unkn \ CS . Let this updated set crits ∪ unkn be
W ′ = W \ CS ∪ {c}. We have that M ⊆ W ′ so invariant (1) continues to hold.
Furthermore, let M ′ ∈ AllMuses(W ′) be any mus of W ′. Since AllMuses(W ′) ⊆
AllMuses(W), M ′ is also a mus of W . Hence M ′ must be hit by the mcs CS and
since W ′ only contains c from CS we must have c ∈M ′. This shows that c hits
all muses of W ′, i.e., removing it from W ′ removes all muses from W ′ making
W ′ sat . That is, c is critical for W ′ = crits ∪ unkn, and invariant (2) continues
to hold.

Finally since we are assuming that em-rmr is correct, the invariants are
preserved after em-rmr moves some clauses from unkn to crits. The call to

Algorithm 3: findmcs(crits, unkn): Find an mcs of crits ∪unkn entirely
contained in unkn.

Input: (crits, unkn) Two sets of clauses whose union is unsatisfiable.
Output: CS an mcs of crits ∪ unkn that is contained in unkn and a model π

such that π |= (crits ∪ unkn) \ CS
1 (sat?, π, κ) ← SatSolve(crits)
2 if not sat? then
3 return null
4 CS ← {c ∈ unkn |π 6|= c}
5 while |CS | > 1 do
6 (sat?, π′, κ) ← SatSolve(crits ∪ (unkn \ CS) ∪ atLeastOneIsTrue(CS))
7 if sat? then
8 CS ← {c ∈ CS |π′ 6|= c}
9 π ← π′

10 else
11 return (CS , π)
12 return (CS , π)

refine-clause-set cannot affect invariant (2) and since we assume that it is
correct, it preserves also invariant (1).

Finding a Constrained MCS. There are two state of the art algorithms for
finding mcses, CLD [18] and Relaxation Search [3]. Both can be modified to find
an mcs in a particular subset of the input clauses. We tried Relaxation Search
but found that an approach that is similar to CLD, but not identical, worked
best for our purposes. The resulting Algorithm 3 finds an mcs of the union of
its two input clause sets, crits and unkn that is constrained to be contained in
unkn.

Initially a sat test is performed on crits. If crits is unsat , then there is no
correction subset contained in unkn so the algorithm returns null. Otherwise,
we have a satisfying model π of crits. The set of clauses falsified by any model
is always a correction subset, and for π this correction subset, CS , is contained
in unkn. The algorithm makes CS minimal by a sequence of sat calls, each one
asking the sat solver to find a new model that falsifies a proper subset of clauses
from the previous model. At each iteration, CS is updated to be the reduced
set of falsified clauses. This continues until a model cannot be found or CS is
reduced down to one clause. If a model cannot be found this means that adding
any clause of CS to (crits ∪ unkn) \CS yields an unsatisfiable formula, i.e., CS
is an mcs. If CS is reduced to one clause then that clause must be an mcs since
crits ∪ unkn is unsatisfiable, and an invariant of the algorithm is that CS is
always a correction set of crits ∪ unkn.

The main difference between Alg. 3 and CLD of [18] lies in the encoding of
atLeastOneIsTrue(CS) constraint passed to the sat solver. In CLD this con-
straint is encoded as one large clause that is the disjunction of all of the clauses
in CS . π falsifies all clauses of CS , so it must falsify their disjunction, therefore
this disjunction is not a tautology. Furthermore, when the disjunction is satisfied

at least one more clause of CS must also be satisfied. In Alg. 3 we instead add a
selection variable to each clause of CS . That is, each clause ci ∈ CS is trans-
formed into the clause c+i = ci ∨ ¬si, where si is a new variable not appearing
elsewhere in the formula. Making si true strengthens c+i back to ci, while making
it false satisfies c+i , effectively removing it from the CNF. With these selector
variables atLeastOneIsTrue(CS) can be encoded as a clause containing all of the
selector variables:

∨
ci∈CS si.

In addition, we found that in 90% of cases when the sat call is able to find
an improving model it was able to do so without backtracking (no conflicts were
found). Hence, a lot of the time of the solver is spent in descending a single branch
that changes little between iterations of Alg. 3. This time can be significantly
reduced if we backtrack only to the point where the branches diverge. This is
similar to techniques used already in general sat solving for improving restarts
[22] and in incremental sat solving for reducing the overhead of assumptions
[1]. We found that these two simple changes had a surprisingly positive effect on
efficiency.

Recursive Model Rotation (RMR). If F is unsatisfiable then it follows from
the definition that a clause c is critical for F if and only if there exists a model
π such that π |= F \ {c}. Hence, if in Alg. 1 or Alg. 2, we find for the current
set of working clauses W = (unkn ∪ crits) a model π such that π |= W \ {c} we
know that c is critical for W .

The technique of rmr [7] is to examine models that differ from π by only
one assignment to see if we can find a model that witnesses the criticality of a
clause different from c whose status is still undetermined. This is accomplished
by flipping π’s assignments to the variables of c one by one. Each such flipped
model satisfies c and can be checked to see if it falsifies only one other unknown
clause. If such a clause c′ is found, then c′ is now known to be critical, and
we can recursively flip the model that witnesses its criticality. Recursive model
rotation has been found to be very effective in mus finding, eliminating many
sat tests. Eager model rotation (ermr) [21] improves rmr by allowing it to
falsify a critical clause, which may enable further rotations.

We have found that we can effectively find more critical clauses than ermr
using Algorithm 4. This algorithm first runs ermr and then uses a sat solver
to find a model that witnesses the criticality of a clause of unknown status. This
is done by using a standard encoding of an “at most one” constraint over the
negation of the selector variables of the clauses currently in unkn. This forces the
model to satisfy all clauses of crits ∪ unkn except one. (The model must falsify
that remaining clause as crits∪unkn is unsatisfiable). This sequence of sat calls
can in principle find all critical clauses, but it can sometimes take too long. In
practice, we put a strict time bound on the sat call, and found that within that
bound we could still find a useful number of additional critical clauses. As we
will show in section 5, this method can sometimes hinder performance, but also
allows us to solve some instances that were otherwise too hard.

Algorithm 4: em-rmr(c, crits, unkn, π) find more criticals than ermr

Input: (c, crits, unkn, π): crits ∪ unkn is unsat ; all clauses of crits are critical
for crits ∪ unkn, c ∈ crits; π 6|= c, and π |= (crits ∪ unkn) \ {c}.

Output: Returns an additional set of clauses critical for crits ∪ unkn.
1 while true do
2 crits ′ ← crits ∪ ermr (c, crits, unkn, π)
3 unkn ′ ← unkn \ crits ′

4 (sat?, π, κ) ← SatSolve(crits ′ ∪ atMostOne({¬si | ci ∈ unkn ′}))
5 if sat? then
6 c← the single ci ∈ unkn ′ such that π |= ¬si
7 crits ′ ← crits ′ ∪ {c}
8 unkn ′ ← unkn ′ \ {c}
9 else

10 return (crits ′ \ crits)

4.2 Finding all MUSES

We have also developed an algorithm for finding all muses. Our algorithm ex-
ploits the idea of using a sat formula to represent a constrained collection of
sets. This idea was also used in the marco system which also enumerates all
muses [16]. Specifically, if we regard each propositional variable as being a set
element, then the set of variables made true by any model can be viewed as
being a set. The set of satisfying models then represents a collection of sets.

In marco, all muses are enumerated by maintaining a sat formula ClsSets
which contains a variable si for each clause ci ∈ F . Clauses are added to ClsSets
to exclude all already found muses as well as all supersets of these muses. For
example, if M = {c1, c3, c4} is a known mus then the clause (¬s1 ∨ ¬s3 ∨ ¬s4)
ensures that every satisfying model of ClsSets excludes at least one clause of
M—this blocks M and all supersets of M from being solutions to ClsSets. A
sat test is preformed on ClsSets which extracts a subset F ′ of F not containing
any known mus. If F ′ is unsat one of its muses is extracted using Alg. 1 and then
blocked in ClsSets, otherwise marco grows F ′ into an mss-mcs pair 〈S,F \ S〉
and a clause is added to ClsSets to block F \ S and all of its supersets. For
example, for a correction subset C = {c1, c3, c4} the clause (s1∨s3∨s4) is added
to ClsSets. When ClsSets becomes unsat , all muses have been enumerated.

Algorithm 5 is our new algorithm for enumerating all muses of an unsatis-
fiable formula F . The high level structure of Algorithm 5 is similar to that of
marco but rather than treating the mus extraction procedure as a black box,
it records the (not necessarily minimal) correction subsets discovered during the
MUS procedure and uses them to accelerate the extraction of future muses. In
particular, muses and mcses are blocked in the same way as in marco. Hence,
at any stage the set F ′ obtained from a sat solution of ClsSets has the properties
(a) F ′ does not contain any known muses and (b) F ′ hits all known correction
subsets. We want F ′ to hit all known correction subsets as otherwise F ′ can-
not contain a mus. When ClsSets becomes unsatisfiable all muses have been
enumerated (and blocked).

Algorithm 5: mcs-mus-all
(
F
)
: Enumerate all muses of F using mcs

duality.

Input: F an unsatisfiable set of clauses
Output: enumerate all muses of F

1 ClsSets ← empty set of clauses and the set of variables {si | ci ∈ F}
2 while true do
3 (sat?, π, κ) ← SatSolve(ClsSets) // Setting all decisions to true
4 if not sat? then
5 return // All muses enumerated
6 F ′ ← {ci | ci ∈ F ∧ π |= si}
7 Fc ← F \ F ′

8 (sat?, π, κ) ← SatSolve(F ′)
9 if sat? then

10 ClsSets ← ClsSets ∪ (
∨

ci∈Fc si) // mcs

11 else
12 crits ← {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj ∈ Fc}}
13 unkn ← F ′ \ crits
14 while true do
15 (CS , π)← find-mcs(crits, unkn)
16 if CS = null then
17 enumerate(crits) // crits is a mus
18 ClsSets ← ClsSets ∪ (

∨
ci∈crits ¬si) // Block this mus

19 break
20 else
21 c← choose c ∈ CS

22 CSF ← extend-cs (CS , π, F ′, Fc)
23 ClsSets ← ClsSets ∪ (

∨
ci∈CSF si) // Correction set

24 Fc ← Fc ∪ (CS \ {c})
25 crits ← crits ∪ {c} ∪ {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj ∈ Fc}}
26 unkn ← unkn \ (CS ∪ crits)
27 crits ← em-rmr (c,crits,unkn,π)
28 unkn ← refine-clause-set(crits, unkn, |CS | > 1),

Given a sat solution F ′ of ClsSets, we extract a mus using a procedure
similar to Alg. 2. In addition, however, we mirror the removal of clauses from
unkn by setting the corresponding variable in ClsSets to false. Unit propagation
in ClsSets may then give us more variables that can be moved to crits, because
previously discovered correction sets must be hit. Once a mus is constructed, all
these assignments to ClsSets are retracted.

One complication that arises in comparison to Alg. 2 is that when we discover
an mcs, it is only an mcs of crits ∪ unkn, but we can only add mcses of F to
ClsSets. Therefore, we need to extend each mcs that we discover to an mcs of F .
The function extend-cs does this by adding to CS all clauses of F\(crits∪unkn)
that were violated by π. We choose not to minimize this CS , as it can be costly
especially if F is much bigger than crits ∪ unkn.

An additional insight arising from the ideas of Relaxation Search [3] is that if
while solving ClsSets we force the sat solver to always set its decision variables
to true, then the set F ′ we obtain will be a maximal set satisfying (a) and

(b) above. Thus the set of excluded clauses Fc = F \ F ′ must be a minimal
hitting set of the set of known muses. Each known mus in ClsSets forces the
exclusion of at least one clause. Thus Fc, is a hitting set of the known muses.
Since setting all decision variables to true causes the inclusion of clauses, all
exclusions must be forced by unit propagation. This means that each excluded
clause arises from a mus all of whose other clauses have already been included
in F ′. That is, for each excluded clause c in Fc there is some known mus M
such that M ∩ Fc = {c}. This shows that Fc is minimal.

Theorem 2. If its input formula F is unsat, All-MCS-MUS returns all MUSes
of its input formula F .

Proof (Sketch). First note that all muses and all msses are solutions of ClsSets.
At each iteration, it produces either a satisfiable set, whose complement is an
mcs, or an unsatisfiable set which is reduced to a mus. Each is subsequently
blocked so cannot be reported again, nor can any of its supersets. Additionally,
the inner loop generates correction subsets, which it blocks in ClsSets, without
checking if they are mcses of F . If these are mcses then they will not be pro-
duced as solutions of ClsSets. So the algorithm will produce only muses and
mcses before ClsSets becomes unsat. Additionally, it will produce all muses, as
this is the only way to block such solutions.

It remains to show that it produces correct mcses and muses. For mcses, it
follows from the fact that the formula is satisfiable and the solution is maximal.
For muses, we only need to show that unit propagation in ClsSets produces
critical clauses. Indeed, all correction sets that are blocked in ClsSets are either
produced by solutions of ClsSets itself or as mcses of some subset of F , extended
to a correction set of F . When such a blocking clause becomes unit, it means
that exactly one of the clauses of the corresponding correction set remains in
crits ∪ unkn. A mus must hit all correction sets, so the sole remaining clause
is critical for crits ∪ unkn. The correctness of the rest of the mus extraction
procedure follows from the correctness of Algorithm 2.

5 Empirical Evaluation

We implemented all of our new algorithms C++, and evaluated them against
state-of-the-art algorithms for the corresponding tasks. We ran all experiments
on a cluster of 48-core Opteron 6176 nodes at 2.3 GHz having 378 GB RAM.

Discovering MCSES. The state of the art in discovering mcses is cld [18]
and Relaxation Search (rs) [3]. We compared Alg. 3, (denoted mcscl) using
minisat as the sat solver without preprocessing [11], against cld and rs in the
tasks of identifying a single mcs and generating all mcses of a formula, on a
set comprising 1343 industrial instances from sat competitions and structured
maxsat instances from maxsat evaluations [18]. We show cactus plots com-
paring the three algorithms in both tasks in Figure 5, with a timeout of 1800
seconds.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1200 1220 1240 1260 1280 1300 1320 1340

T
im

e

Instances

MCSCL
RS

CLD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 360 380 400 420 440 460 480 500

T
im

e

Instances

MCSCL
RS

CLD

(a) (b)

Fig. 1. Number of solved instances against time for (a) generating a single mcs and
(b) generating all mcses of a formula.

We first note that there is a relatively small window in which the algorithms
may differentiate. In the case of discovering a single mcs, more than 1200 in-
stances are solved instantaneously by all 3 algorithms, while some 20 of them are
out of reach for all. Regardless, mcscl is faster than the other two algorithms,
for easy instances as well as hard ones and finds an mcs in 17 more instances
than cld and 5 more instances than rs. Similarly, in the case of discovering all
mcses, all 3 algorithms solve approximately 400 instances in less than a second,
while 700 have too many mcses to enumerate. In this case, mcscl again outper-
forms both the other alternatives, finding all mcses in 15 more instances than
rs and 9 more instances than cld.

Discovering a single MUS. For this task, we used a set of 324 instances
assembled by Belov et al. [5] for the evaluation of the tool dmuser. We tested
implementations of mcs-mus that used either minisat or glucose [2] as the
backend sat solver both with preprocessing enabled. We modified these solvers to
bound time spent in preprocessing to 5% of total runtime. We evaluated mcs-mus
with em-rmr or with only eager model rotation. We compared against muser [8]
using minisat and using glucose, and against haifa-muc [21] (based on min-
isat). For all algorithms, we preprocess the instances by trimming them using
glucose and the tool DRAT-trim, which is a particularly effective heuristic
clause set refinement method, but which cannot prove minimality and rarely
produces a minimal mus. We also compare against dmuser [5] a system that
augments a “core” mus extraction algorithms with more elaborate trimming
techniques. dmuser yields significant improvements to muser and haifa-muc
and potentially could also improve mcs-mus. However, we have not, as yet,
integrated mcs-mus into dmuser to test this. The timeout in this experiment—
including trimming—was set to 3600 seconds. Results are shown in Figure 2.

Our first observation is that the combination of minisat and assumption-
based solving is deficient, as is evident by the very poor performance of muser
with minisat. Nevertheless, mcs-mus with minisat is comparable to both haifa-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 240 250 260 270 280 290 300

T
im

e

Instances

MCS-MUS-Glucose
MCS-MUS-Glucose-E-RMR

MCS-MUS-Minisat
MCS-MUS-Minisat-E-RMR

Muser-Glucose
Muser

HaifaMUC
ITr0-HM-A

Fig. 2. Number of solved instances against time for extracting a single mus.

muc and muser with glucose1. We also see that em-rmr improves performance
overall in this case, yielding the second best combination among core algorithms.
When paired with its glucose backend, mcs-mus becomes the overall best algo-
rithm for this task, surpassing even ITr-HM-A, the best configuration of dmuser
reported in [5]. However, the improvement of mcs-mus when moving from min-
isat to glucose is not as dramatic as that of muser. It is, however, clearly
ahead of other core algorithms and although it solves just 6 more instances than
the next closest algorithm it does so significantly faster and even solves 2 more
instances than dmuser. Interestingly, em-rmr improves mcs-mus with minisat
but makes things worse when glucose is used.

Discovering all MUSES. Here we compare Algo 5 (mcs-mus-all) against
the state of the art for discovering multiple (potentially all) muses, marco [16].
We use only the minisat backend, as that is what marco is based on, with the
additional optimization that for every unsatisfiable subset that we minimize, we
create a copy of the sat solver in which we can do destructive updates. This is
implicit in marco, which uses an external tool for extracting a mus.

We used the set of benchmarks from the MUS track of the 2011 sat com-
petition2 (without trimming) and ran both algorithms for 3600 seconds on each
instance. In Figure 5 we show scatter plots of the time taken by each algorithm
to generate the first mus, of the time taken to differentiate between an instance
with one mus or many and of the number of muses generated within the time-
out. Determining whether an instance contains one mus or many involves either
successfully terminating generation or generating a second mus.

We see that mcs-mus-all is more effective than marco at generating the
first mus and differentiating between instances with a single mus or many muses.
Indeed, it finds a mus in 20 more instances than marco and differentiates 17
more instances. However, when marco can generate several muses, it is typi-

1 Our results seem to contradict the findings of Belov et al. [5], who found that muser
with glucose was worse than haifa-muc. It is unclear why this is the case.

2 http://www.satcompetition.org/2011

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
a
rc

o
 t

im
e

MCS-MUS-All time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
a
rc

o
 t

im
e

MCS-MUS-All time

(a) (b)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
C

S
-M

U
S

-A
ll

m
u
se

s

Marco muses

(c)

Fig. 3. (a) Time for finding a single mus, (b) Time to differentiate between single-mus
and multiple-mus instances, (c) number of muses generated, in logscale. In all cases,
points above the line indicate mcs-mus-all was better.

cally more efficient at doing so, especially for very large numbers of muses. We
conjecture that in these cases, extracting a single mus is so efficient, that the
overhead of keeping track of the correction sets that mcs-mus-all generates out-
weighs their potential benefit. This means that when the objective is to generate
a variety of muses quickly on instances of moderate difficulty, mcs-mus-all is
to be preferred, but for large numbers of muses in easy instances, marco is
preferable.

6 Conclusions

We have proposed a novel approach to extracting muses from unsatisfiable for-
mulas. We exploited the well-known hitting set duality between correction sets
and unsatisfiable subsets and used a greedy approach which, given an unhit mcs,
can extend a set of clauses so that they are guaranteed to be a subset of a mus.
We further extended this algorithm to generating all muses. These developments
hinge in part on our new very efficient mcs extraction algorithm. In all cases,
we have demonstrated that the new algorithms outperform the state of the art.
Despite this, there is little tuning or low level optimizations in our implementa-
tion, in contrast to the current state of the art [21]. This suggests that in future
work we explore such optimizations to widen the gap.

References

1. Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving glucose
for incremental SAT solving with assumptions: Application to MUS extraction.
In Proceedings of Theory and Applications of Satisfiability Testing (SAT), pages
309–317, 2013.

2. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In Proceedings of the International Joint Conference on Artifical
Intelligence (IJCAI), pages 399–404, 2009.

3. Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George Katsirelos. Re-
laxation search: A simple way of managing optional clauses. In Proceedings of the
AAAI National Conference (AAAI), pages 835–841, 2014.

4. Anton Belov, Huan Chen, Alan Mishchenko, and João Marques-Silva. Core min-
imization in sat-based abstraction. In Design, Automation and Test in Europe
(DATE), pages 1411–1416, 2013.

5. Anton Belov, Marijn Heule, and João Marques-Silva. MUS extraction using clausal
proofs. In Proceedings of Theory and Applications of Satisfiability Testing (SAT),
pages 48–57, 2014.

6. Anton Belov, Inês Lynce, and João Marques-Silva. Towards efficient MUS extrac-
tion. AI Commun., 25(2):97–116, 2012.

7. Anton Belov and João Marques-Silva. Accelerating MUS extraction with recursive
model rotation. In Formal Methods in Computer-Aided Design (FMCAD), pages
37–40, 2011.

8. Anton Belov and João Marques-Silva. Muser2: An efficient MUS extractor. JSAT,
8(1/2):123–128, 2012.

9. Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-strength
verification tool. In Proceedings of the International on Computer Aided Verifica-
tion (CAV), pages 24–40, 2010.

10. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of
Theory and Applications of Satisfiability Testing (SAT), pages 502–518, 2003.

11. Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of
Theory and Applications of Satisfiability Testing (SAT), pages 502–518, 2003.

12. Éric Grégoire, Bertrand Mazure, and Cédric Piette. On approaches to explaining
infeasibility of sets of boolean clauses. In International Conference on Tools with
Artificial Intelligence (ICTAI), pages 74–83, 2008.

13. Arie Gurfinkel and Anton Belov. Frankenbit: Bit-precise verification with many bits
- (competition contribution). In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 408–411, 2014.

14. Arie Gurfinkel, Anton Belov, and João Marques-Silva. Synthesizing safe bit-precise
invariants. In International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), pages 93–108, 2014.

15. Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to speed up
MUS extraction. In Proceedings of Theory and Applications of Satisfiability Testing
(SAT), pages 276–292, 2013.

16. Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple
muses quickly. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), pages 160–175, 2013.

17. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. Journal of Automated Reasoning, 40(1):1–33,
January 2008.

18. Joao Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, and An-
ton Belov. On computing minimal correction subsets. In Proceedings of the Inter-
national Joint Conference on Artifical Intelligence (IJCAI), pages 615–622, 2013.

19. João Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over monotone
predicates in boolean formulae. In Proceedings of the International on Computer
Aided Verification (CAV), 2013.

20. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Efficient MUS extraction
with resolution. In Formal Methods in Computer-Aided Design (FMCAD), pages
197–200, 2013.

21. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Accelerated deletion-based
extraction of minimal unsatisfiable cores. Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), 9:27–51, 2014.

22. Antonio Ramos, Peter van der Tak, and Marijn Heule. Between restarts and
backjumps. In Proceedings of Theory and Applications of Satisfiability Testing
(SAT), pages 216–229, 2011.

23. Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

24. Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding minimal un-
satisfiable cores of declarative specifications. In Proceedings of the International
Symposium on Formal Methods (FM), pages 326–341, 2008.

25. Siert Wieringa. Understanding, improving and parallelizing MUS finding using
model rotation. In Principles and Practice of Constraint Programming (CP), pages
672–687, 2012.

