
Finding a Collection of MUSes Incrementally

Fahiem Bacchus1 and George Katsirelos2

1Department of Computer Science 2MIAT, INRA
University of Toronto Toulouse, France

Toronto, Ontario, Canada george.katsirelos@toulouse.inra.fr

fbacchus@cs.toronto.edu

Abstract. Minimal Unsatisfiable Sets (MUSes) are useful in a number
of applications. However, in general there are many different MUSes,
and each application might have different preferences over these MUSes.
Typical Muser systems produce a single MUS without much control over
which MUS is generated. In this paper we describe an algorithm that can
efficiently compute a collection of MUSes, thus presenting an application
with a range of choices. Our algorithm improves over previous methods
for finding multiple MUSes by computing its MUSes incrementally. This
allows it to generate multiple MUSes more efficiently; making it more
feasible to supply applications with a collection of MUSes rather than
just one.

1 Introduction

When given an unsatisfiable CNF F , SAT solvers can return a core, i.e., a
subset of F that remains unsatisfiable. Many applications, e.g., program type
debugging, circuit diagnosis, and production configuration [6], need cores in their
processing. In many cases these applications can be made much more effective
if supplied with minimal unsatisfiable sets (MUSes), which are cores that are
minimal under set inclusion. That is, no proper subset of a MUS is unsatisfiable.

This makes the problem of efficiently extracting a MUS an important and well
studied problem, see [5, 9, 18, 13, 20, 21] and [6] for a more extensive list. In fact,
the problem of finding a minimal set of constraints sufficient to make a problem
unsolvable is important in other areas as well. For example in operations research
it is often useful to find irreducible inconsistent subsystems (IISes) of linear
programs and integer linear programs [24, 8], and in CP a minimal unsatisfiable
set of constraints [12].

In various applications the preference for MUSes over arbitrary cores goes
further, and some MUSes might be preferred to others. Most algorithms for
computing MUSes, however, return an arbitrary MUS . There has been some
work on the problem of computing specific types of MUSes. In [19] the prob-
lem of computing lexicographic preferred MUSes is addressed. Furthermore, the
problem of computing the smallest MUS has been addressed in [10, 15, 11]. How-
ever, algorithms for extracting specific MUSes, especially those for extracting
the smallest MUS , can be considerably less efficient than state-of-the-art MUS

extraction algorithms returning an arbitrary MUS .

In this paper we address this issue by trying to quickly return a collection of
MUSes, rather than trying to compute a specific type of MUS . The application
can then choose its best MUS from that collection. So, e.g., although our ap-
proach cannot guarantee returning the smallest MUS , the application can choose
the smallest MUS from among the collection returned. This approach is advan-
tageous when algorithms for computing the most preferred MUS are too costly
(e.g., computing the smallest MUS), or when there is no known algorithm for
computing the most preferred MUS (e.g., the application’s preference criteria is
not lexicographic).

We accomplish this task through an extension of a recent MUS algorithm
[3]. The advantage of our algorithm is that it can exploit information computed
when finding previous MUSes to speed up finding future MUSes. Hence, it can
find multiple MUSes more efficiently. This algorithm has the drawback, however,
that it cannot keep on finding more MUSes when given more time: it computes
a set of MUSes of indeterminate size and then stops. Adopting the power set
exploration idea of [14] we address this drawback, presenting a method that can
eventually compute all MUSes while still enumerating them at a reasonable rate.
We show that our algorithms improve on the state of the art.

2 Background

Let F be an unsatisfiable set of clauses.

Definition 1 (MUS) A Minimal Unsatisfiable Set (MUS) of F is a unsat-
isfiable subset M ⊆ F that is minimal w.r.t. set inclusion. That is, M is unsat
but no proper subset is.

Definition 2 (MSS) A Maximal Satisfiable Subset (MSS) of F is a satis-
fiable subset S ⊆ F that is maximal w.r.t set inclusion.

Definition 3 (MCS) A correction subset of F is a subset of F whose comple-
ment in F is sat . A Minimal Correction Subset (MCS) of F is a correction
subset that is minimal w.r.t. set inclusion.

Note that if C is an MCS of F then its complement F \ C is an MSS of F .

Definition 4 A clause c ∈ F is said to be critical for F (also known as a
transition clause [7]) when F is unsat and F − {c} is sat .

Intuitively, a MUS is an unsatisfiable set that cannot be reduced without
causing it to become satisfiable; a MSS is a satisfiable set that cannot be added
to without causing it to become unsatisfiable; and an MCS is a minimal set of
removals from F that causes F to become satisfiable.

A critical clause for F is one whose removal from F causes F to become
satisfiable. If c is critical for F then (a) c must be contained in every MUS of
F and (b) {c} is an MCS of F . Furthermore, M is a MUS if and only if every
c ∈ M is critical for M . Note that a clause c that is critical for a set S is not
necessarily critical for a superset S′ ⊃ S. In particular, S′ might contain other
MUSes that do not contain c.

Duality. A hitting set H of a collection of sets C is a set that has a non empty
intersection with each set in C: ∀C ∈ C.H ∩ C 6= ∅. A hitting set H of C is
minimal (or irreducible) if no subset of H is a hitting set of C.

Let AllMuses(F) (AllMcses(F)) be the set containing all MUSes (MCSes) F .
There is a well known hitting set duality between AllMuses and AllMcses [22].
Specifically, M ∈ AllMuses(F) iff M is a minimal hitting set of AllMcses(F), and
dually, C ∈ AllMcses(F) iff C is a minimal hitting set of AllMuses(F). The duality
also holds for non-minimal sets, e.g., any correction set hits all unsatisfiable sub-
sets. It is useful to point out that if F ′ ⊆ F , then AllMuses(F ′) ⊆ AllMuses(F).
Hence, if f is critical for F it is critical for all unsatisfiable subsets of F . An
MCS C ′ of F ′ ⊂ F , on the other hand, is not necessarily an MCS of F , however
C ′ can always be extended to an MCS C of F [3].

3 Enumerating MUSes

To the best of our knowledge the current state-of-the-art algorithm for the prob-
lem of quickly computing a collection of MUSes is the Marco system originally
developed in [14] and later improved in [16]. Marco+ (the new optimized ver-
sion of Marco [16]) was compared with previous approaches [4, 17] and shown
to be superior at this task. Therefore we confine our attention in this paper to
comparing with the Marco+ approach.

Algorithm 1 shows the algorithm used by Marco+. Marco+ uses the technique
of representing subsets of F , the input set of clauses, with a CNF, ClsSets.
ClsSets contains a variable si for each clause ci ∈ F . Every satisfying solution of
ClsSets specifies a subset of F : the set of clauses ci corresponding to true si in
the satisfying solution. Initially, ClsSets contains no clauses, and thus initially
its set of satisfying solutions corresponds to F ’s powerset.

Marco+ uses ClsSets to keep track of which subsets of F have already been
tested so that each MUS it enumerates is distinct. When ClsSets becomes unsat
all subsets of F have been tested and all MUSes have been enumerated. Other-
wise, the truth assignment π (line 4) provides a subset S of unknown status.

Marco+ forces the sat solver to assign variables to true in each decision.
Hence, if S is sat it is guaranteed to be an MSS (see [2] or [23] for a simple proof).
S and all of its subsets are thus now known to be sat so they can be blocked in
ClsSets. This means that all future solutions of ClsSets must have a non-empty
intersection with F \ S, i.e., they must hit the complement of S, a (minimal)
correction set. The update of ClsSets is accomplished with the subroutine call
hitCorrectionSet(F \S) (line 6) which returns a clause asserting that some si
corresponding to a clause in F \ S must be true.

Otherwise S is unsat and it contains at least one MUS. Marco+ then invokes
a MUS finding algorithm to find one of S’s MUSes. In addition, Marco+ informs
the MUS algorithm of all singleton MCSes it has found. The computed MUS M
has to include the union of these singleton MCSes as it must hit every MCS .

M and all of its supersets are known to be unsat and are blocked in ClsSets by
a clause computed by blockSuperSets(M) asserting that some si correspond-
ing to ci ∈ M must be false [14]. After all subsets of F have been identified as
being sat or unsat (detected by ClsSets becoming unsat), the algorithm returns.

Algorithm 1: Marco+ MUS enumeration algorithm

Input: F an unsatisfiable set of clauses
Output: All MUSes of F , output as they are computed

1 ClsSets ← ∅ C Initially, ClsSets admits all subsets of F as solutions.
2 while true do

// If C is sat , SatSolve(C, π) returns true and puts truth assignment in π
3 if SatSolve(ClsSets, π) then
4 S ← {ci ∈ F |π[si] = true} C All decisions set to true so S is maximal
5 if SatSolve(S, π) then
6 ClsSets ← ClsSets ∪ hitCorrectionSet(F \ S) C F \ S is a MCS
7 else
8 M ← findMUS(S, {all singleton MCSes})
9 output(MUS)

10 ClsSets ← ClsSets ∪ blockSuperSets(M)
11 else return

One advantage of Marco+ is that it can utilize any MUS algorithm. Thus
once it has identified a subset of F to be unsat it can enumerate a new MUS as
efficiently as finding a single MUS . Another advantage is that it will continue to
enumerate MUSes until it has enumerated them all. On the negative side, each
new MUS is computed with an entirely separate computation. This MUS compu-
tation only knows about the prior singleton MCSes but does not otherwise share
much information with prior MUS computations (beyond some learnt clauses).

4 A new Algorithm for Enumerating MUSes

Algorithm 2 shows our new algorithm for generating multiple MUSes from a
formula. The grayed out lines will be used when multiple initial calls are made
to the algorithm, they will be discussed in the next section. For now it can be
noted that these lines have no effect if ClsSets is initially an empty set of clauses.

The algorithm is a modification of the recently proposed state-of-the-art MUS

algorithm MCS-MUS [3]. It extends MCS-MUS by performing a backtracking
search over a tree in which the branch points correspond to the different ways
the MUSes to be output can hit a just computed MCS .

The algorithm maintains a current formula F ′ ⊆ F , such that F ′ is unsat ,
partitioned into a set of clauses known to be critical for F ′, crits, and a set
of clauses of unknown status, unkn. It starts by identifying an MCS , cs, of
crits ∪ unkn, such that cs ⊆ unkn, using a slight modification of existing MCS

algorithms [3]. If no such MCS exists, then crits is unsatisfiable and since all of
its clauses are critical, it is a MUS . This MUS is reported and backtrack occurs.
If cs does exist, it creates a choice point. By duality we know that every MUS

must hit cs, and by minimality of cs we know that for every clause c ∈ cs there
is a MUS whose intersection with cs is only c. Hence, we select a clause c ∈ cs
to mark as critical (line 12) removing the rest from unkn (line 10). This ensures
that all MUSes enumerated in the recursive call contain c and hence hit cs.

Before the recursive call, we can use two standard techniques that are critical
for performance, clause set refinement [21] and recursive model rotation [7].

Algorithm 2: MCS-MUS-BT(unkn, crits,ClsSets): Output a collection of

MUSes of unkn ∪ crits using MCS duality. To find some MUSes of F the initial

call MCS-MUS-BT (F , {},ClsSets = ∅) is used.

Input: unkn a set of clauses of unknown status such that unkn ∪ crits is unsat
Input: crits a set of clauses critical for unkn ∪ crits

Input: ClsSets a CNF representing subsets of the input formula of unknown status.

Output: Some MUSes of unkn ∪ crits, output as computed

Output: ClsSets is modified.

1 crits ← crits ∪ {ci | si ∈ UP (ClsSets ∪ {(¬sj)|cj /∈ crits ∪ unkn})}

2 unkn ← unkn \ crits

3 (cs, π)← findMCS(crits, unkn) C Find cs, an MCS contained in unkn.
4 if cs = null then
5 output(crits) C crits is a MUS of crits ∪ unkn

6 ClsSets ← ClsSets ∪ blockSuperSets(crits)

7 return
8 else

9 ClsSets ← ClsSets ∪ hitCorrectionSet({c|π 6|= c}) C Correction set of F
10 unkn ← unkn \ cs
11 for c ∈ cs do
12 crits ′ ← crits ∪ {c}
13 unkn ′ ← refineClauseSet(crits ′, unkn)
14 C ← recursiveModelRotation(c, crits, unkn, π)
15 MCS-MUS-BT(unkn ′ \ C, crits ′ ∪ C)

Theorem 1. All sets output by MCS-MUS-BT are MUSes of its input F = unkn∪
crits. Furthermore, if F unsatisfiable a least one MUS will be output. Finally, if
only one MUS is output, then F contains only one MUS.

We omit the straightforward proof to save space. Although the theorem shows
that MCS-MUS-BT will generate at least one MUS (as efficiently as the state-of-
the-art MCS-MUS algorithm), the number of MUSes it will generate is indeter-
minate, as this depends on the MCSes it happens to generate. Furthermore, it
cannot, in general, generate all MUSes. Intuitively, by removing cs from unkn at
line 10, we block it from generating any MUS M with |M ∩ cs| > 1.

The main advantage of this algorithm is that it shares computational effort
among many MUSes. Namely, after the first MUS is generated, computation for
the second MUS starts with at least one (potentially many) known MCS , and
may also have several clauses in crits and a smaller set of clauses in unkn. Hence,
it can more efficiently generate several MUSes.

4.1 Enumerating all MUSes

While MCS-MUS-BT may be able to generate a sufficiently large collection of
MUSes, the unpredictability of the size of this collection might be unsuitable in

Algorithm 3: MCS-MUS-All-BT(F): Enumerate all MUSes of F .

Input: F an unsatisfiable set of clauses
Output: All MUSes of F , output as there are computed

1 ClsSets ← ∅ C Initially, ClsSets admits all subsets of F as solutions.
2 while true do
3 if not SatSolve(ClsSets,π) then return C All MUSes enumerated
4 S ← {ci | ci ∈ F ∧ π |= si} C All decisions set to true so S is maximal
5 if SatSolve(S,π) then
6 ClsSets ← ClsSets ∪ hitCorrectionSet(F \ S) C S is an MSS
7 else MCS-MUS-BT (F , crits, unkn, ClsSets)

some cases. In such cases we may of course fall back to Marco+, giving up the
advantages of MCS-MUS-BT.

Another option is to embed MCS-MUS-BT in Marco+. It is straightforward to
modify Algorithm 1 so that it uses MCS-MUS-BT instead of findMUS and blocks
all MUSes discovered during one call. However, without modifying Marco+ this
allows only limited information to flow between Marco+ and MCS-MUS-BT. In
particular, sharing information beyond singleton correction sets is not supported.

A third option then is deeper integration of MCS-MUS-BT into a Marco-like
algorithm. We show this in Algorithm 3, which is based on the MCS-MUS-All

algorithm of [3]. The outline of MCS-MUS-All-BT is broadly similar to that of
Marco+. Like Marco+ it uses a CNF ClsSets to represent subsets of F with
unknown status and uses the same hitCorrectionSet and blockSuperSets
procedures to block MSSes and MUSes, respectively. When ClsSets becomes
unsatisfiable all MUSes have been enumerated (line 3). Each solution π of ClsSets
yields a set S of unknown status, which is then tested for satisfiability.

If it is satisfiable, S is guaranteed to be an MSS since we require the solver to
assign variables to true in each decision as in Marco+. We can then block S and all
of its subsets by forcing ClsSets to hit its complement with hitCorrectionSet.

If S is unsatisfiable, then it is given to MCS-MUS-BT to extract some of its
MUSes. We generalize Marco+, however, by providing all previously discovered
correction sets to MCS-MUS-BT, not just the singleton MCSes. These correction
sets can be exploited to discover new critical clauses. In particular, all pre-
viously discovered correction sets result in clauses being added to ClsSets by
hitCorrectionSet. We can use unit propagation (line 1 of Algorithm 2) to
determine if the clauses currently excluded from the MUSes being enumerated
(F \ (crits ∪ unkn)) make some prior correction set cs a singleton (of course
all correction sets that are already singleton will also be found, so this method
obtains at least as much information as Marco+). If so then all MUSes of the
current subset crits ∪ unkn must include that single remaining clause c ∈ cs
since all MUSes must hit cs; i.e, c is critical for crits ∪ unkn.

Thus our algorithm has two advantages over using MCS-MUS-BT in the Marco+

framework. First, individual calls to MCS-MUS-BT may produce MUSes more
quickly because our generalization of Marco+’s technique of exploiting singleton
MCSes (at line 1) can detect more critical clauses, either initially or as unkn

shrinks. Second, the multiple correction sets that can be discovered within MCS-

MUS-BT are all added to ClsSets. Hence, their complementary satisfiable sets
will not appear as possible solutions to ClsSets in the main loop of Algorithm 3.
This can reduce the time spent processing satisfiable sets.

5 Empirical Results

In this section we evaluate our algorithms which we implemented in C++ on top
of MiniSAT. We used the benchmark set of [1] containing 300 problems. We used
a cluster of 48-core 2.3GHz Opteron 6176 nodes with 378 GB RAM available.

First we tested MCS-MUS-BT (Algorithm 2) against the Marco+ system [16].
MCS-MUS-BT can only generate some MUSes, while Marco+ can potentially gen-
erate all. So in the scatter plot (a) of Figure 1 we plotted for each instance the
time each approach took to produce the first k MUSes, where k is the minimum
of the number of MUSes produced by the two approaches on that instance when
run with a 3600s timeout. In the plot, points above the 45◦ line are where MCS-

MUS-BT is better than Marco+. The data shows that MCS-MUS-BT outperforms
Marco+ on most instances.

We also tested how many MUSes are typically produced by MCS-MUS-BT.
When run on the 300 instances it yielded no MUSes on 20 instances (in 3600s),
1 on 111 instances, 2–10 on 29 instances, and more than 10 on 140 instances.
On 6 instances it yielded over 10,000 MUSes. So we see that MCS-MUS-BT often
yielded a reasonable number of MUSes, but in some cases perhaps not enough.

To go beyond MCS-MUS-BT, potentially generating all MUSes, we used two
variations of our complete algorithms. The first we call Marco-Many. This is MCS-

MUS-BT integrated into an implementation of the Marco+ algorithm, with MCS-

MUS-BT called when a MUS is to be computed and returning multiple MUSes.
The second variation is MCS-MUS-All-BT, from the previous section. We also
compare these against Marco+1 and our previous MUS enumeration algorithm
MCS-MUS-All [3].

Figure 1 (b) compares MCS-MUS-All-BT with Marco+. Here we plotted for
each instance the number of MUSes produced by each approach within a 3600s
timeout. Points above the line represent instances where MCS-MUS-All-BT gener-
ated more MUSes than Marco+. The picture here is not completely clear. How-
ever, overall MCS-MUS-All-BT showed better performance: it generated more
MUSes in 170 cases, an equal number in 48 cases, and fewer in 82 cases. Further-
more, notice that as we move up the x and y axis the instances become easier,
i.e., many more MUSes can be generated per second in these instances. The
instances in which Marco+ outperformed MCS-MUS-All-BT tend to be towards
the upper right of the plot.

Besides the number of instances we are also interested in the rate at which
MUSes are generated. For each instance we calculated the average time needed to
generate a MUS by MCS-MUS-All-BT and Marco+. Figure 1 (c) shows a scatter
plot of these points. The cactus plot of figure 1 (d) elaborates on this data
showing the other algorithms as well.

1 Version 1.1, downloaded from https://sun.iwu.edu/~mliffito/marco/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

M
a
rc

o
+

ti
m

e

MCS-MUS-BT time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
C

S
-M

U
S

-B
T
 m

u
se

s

Marco+ muses

(a) (b)

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

M
a
rc

o
+

ti
m

e
/M

U
S

MCS-MUS-BT time/MUS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 160 180 200 220 240 260 280 300

A
v
e
ra

g
e
 T

im
e
/M

U
S

Instances

Marco
Marco-Many
MCS-MUS-All

All-MCS-MUS-BT

(c) (d)

Fig. 1. (a) Time for Marco+ to generate as many MUSes as MCS-MUS-BT (b): number
of MUSes MCS-MUS-All-BT against Marco+ (logscale). (c) Average time/MUS MCS-
MUS-All-BT against Marco+. (d) Cactus plot of Average time/MUS of all solvers.

In scatter plot (c) the axes have been inverted so that once again points above
the line represent instances in which MCS-MUS-All-BT is better than Marco+.
We zoomed this plot into the range [0,500] seconds per MUS as most of the data
was clustered into this region. These instances show a convincing win for MCS-

MUS-All-BT. The plot excludes 100 instances. Of these, 43 instances could not
be plotted as one or both algorithms produced zero MUSes: on 18 both produced
zero MUSes; on 22 MCS-MUS-All-BT generated a MUS but Marco+ did not; on 3
the inverse happened. The other 57 instances were excluded because of the plot
range. Among them 3 were below the line, 23 above the line and 31 on the line.
Of these excluded instances the most extreme win for Marco+ was an instance
where Marco+ generated 3 MUSes and MCS-MUS-All-BT only 1; and the most
extreme win for MCS-MUS-All-BT was an instance where Marco+ generated only
1 MUS and MCS-MUS-All-BT generated 800.

We see that with few exceptions, the average time to generate a MUS with
MCS-MUS-All-BT is smaller. This is confirmed by the cactus plot (d), where
we see that the average time to generate a MUS by MCS-MUS-All-BT remains
well below that of other algorithms. The corresponding lines only meet for the
hardest instances, where all methods generate one or no MUSes. The cactus plot
also confirms that simply integrating MCS-MUS-BT into a Marco-like algorithm
(i.e., Marco-Many) is not sufficient. Additionally, we see that the MCS-MUS-All-

BT provides a good improvement over the previous MCS-MUS-All.

References

1. MUS track of the 2011 sat competition. http://www.maxsat.udl.cat.

2. Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George Katsirelos. Re-
laxation search: A simple way of managing optional clauses. In Proceedings of the
AAAI National Conference (AAAI), pages 835–841, 2014.

3. Fahiem Bacchus and George Katsirelos. Using minimal correction sets to more
efficiently compute minimal unsatisfiable sets. In Proceedings of the International
Conference on Computer Aided Verification (CAV), 2015. In Press.

4. James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets
of constraints using hitting set dualization. In Practical Aspects of Declarative
Languages PADL, pages 174–186, 2005.

5. Anton Belov, Marijn Heule, and João Marques-Silva. MUS extraction using clausal
proofs. In Proceedings of Theory and Applications of Satisfiability Testing (SAT),
pages 48–57, 2014.

6. Anton Belov, Inês Lynce, and João Marques-Silva. Towards efficient MUS extrac-
tion. AI Commun., 25(2):97–116, 2012.

7. Anton Belov and João Marques-Silva. Accelerating MUS extraction with recursive
model rotation. In Formal Methods in Computer-Aided Design (FMCAD), pages
37–40, 2011.

8. J.W. Chinneck. Feasibility and Infeasibility in Optimization: Algorithms and Com-
putational Methods. Number 118 in International Series in Operations Research
and Management Sciences. Springer, 2008. ISBN 978-0387749310.

9. Éric Grégoire, Bertrand Mazure, and Cédric Piette. On approaches to explaining
infeasibility of sets of boolean clauses. In International Conference on Tools with
Artificial Intelligence (ICTAI), pages 74–83, 2008.

10. Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Quantified maximum
satisfiability: - A core-guided approach. In Proceedings of Theory and Applications
of Satisfiability Testing (SAT), pages 250–266, 2013.

11. Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and Joao Marques-Silva.
Smallest MUS extraction with minimal hitting set dualization. In Principles and
Practice of Constraint Programming - 21st International Conference, CP 2015,
Cork, Ireland, August 31 - September 4, 2015, Proceedings, pages 173–182, 2015.

12. Ulrich Junker. QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial
Intelligence, July 25-29, 2004, San Jose, California, USA, pages 167–172, 2004.

13. Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to speed up
MUS extraction. In Proceedings of Theory and Applications of Satisfiability Testing
(SAT), pages 276–292, 2013.

14. Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple
muses quickly. In Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR), pages 160–175, 2013.

15. Mark H. Liffiton, Maher N. Mneimneh, Inês Lynce, Zaher S. Andraus, João
Marques-Silva, and Karem A. Sakallah. A branch and bound algorithm for ex-
tracting smallest minimal unsatisfiable subformulas. Constraints, 14(4):415–442,
2009.

16. Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast,
flexible mus enumeration. Constraints, pages 1–28, 2015.

17. Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1):1–33, 2008.

18. João Marques-Silva, Mikolás Janota, and Anton Belov. Minimal sets over monotone
predicates in boolean formulae. In Proceedings of the International Conference on
Computer Aided Verification (CAV), 2013.

19. João Marques-Silva and Alessandro Previti. On computing preferred muses and
mcses. In Proceedings of Theory and Applications of Satisfiability Testing (SAT),
pages 58–74, 2014.

20. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Efficient MUS extraction
with resolution. In Formal Methods in Computer-Aided Design (FMCAD), pages
197–200, 2013.

21. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Accelerated deletion-based
extraction of minimal unsatisfiable cores. Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), 9:27–51, 2014.

22. Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

23. Emanuele Di Rosa and Enrico Giunchiglia. Combining approaches for solving
satisfiability problems with qualitative preferences. AI Commun., 26(4):395–408,
2013.

24. J. van Loon. Irreducibly inconsistent systems of linear equations. European Journal
of Operations Research, 8(3):283–288, 1981.

