
Complexity of and Algorithms for Borda Manipulation

Jessica Davies
University of Toronto

Toronto, Canada
jdavies@cs.toronto.edu

George Katsirelos
LRI, Université Paris Sud 11

Paris, France
gkatsi@gmail.com

Nina Narodytska
NICTA and UNSW
Sydney, Australia

ninan@cse.unsw.edu.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract
We prove that it is NP-hard for a coalition of two manipu-
lators to compute how to manipulate the Borda voting rule.
This resolves one of the last open problems in the computa-
tional complexity of manipulating common voting rules. Be-
cause of this NP-hardness, we treat computing a manipula-
tion as an approximation problem where we try to minimize
the number of manipulators. Based on ideas from bin pack-
ing and multiprocessor scheduling, we propose two new ap-
proximation methods to compute manipulations of the Borda
rule. Experiments show that these methods significantly out-
perform the previous best known approximation method. We
are able to find optimal manipulations in almost all the ran-
domly generated elections tested. Our results suggest that,
whilst computing a manipulation of the Borda rule by a coali-
tion is NP-hard, computational complexity may provide only
a weak barrier against manipulation in practice.

Introduction
Voting is a simple mechanism to combine preferences in
multi-agent systems. Unfortunately, results like those of
Gibbrard-Sattertwhaite prove that most voting rules are ma-
nipulable. That is, it may pay for agents to mis-report
their preferences. One appealing escape from manipu-
lation is computational complexity (Bartholdi, Tovey, &
Trick 1989). Whilst a manipulation may exist, perhaps
it is computationally too difficult to find? Unfortunately,
few voting rules in common use are NP-hard to manipu-
late with the addition of weights to votes. The small set
of voting rules that are NP-hard to manipulate with un-
weighted votes includes single transferable voting, 2nd order
Copeland, ranked pairs (all with a single manipulator), and
maximin (with two manipulators) (Bartholdi & Orlin 1991;
Bartholdi, Tovey, & Trick 1989; Xia et al. 2009).

Borda is probably the only commonly used voting rule
where the computational complexity of unweighted manip-
ulation remains open. Xia, Conitzer, & Procaccia (2010)
observe that:

“The exact complexity of the problem [manipulation by
a coalition with unweighted votes] is now known with
respect to almost all of the prominent voting rules, with
the glaring exception of Borda”

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

It is known that computing a manipulation of Borda is
NP-hard when votes are weighted (Conitzer, Sandholm, &
Lang 2007), and polynomial when votes are unweighted and
there is just a single manipulator (Bartholdi, Tovey, & Trick
1989). With a coalition of manipulators and unweighted
votes, it has been conjectured that the problem is NP-hard
(Zuckerman, Procaccia, & Rosenschein 2008).

One of our most important contributions is to close this
question. We prove that computing a manipulation of Borda
with just two manipulators is NP-hard. As a consequence,
we treat computing a manipulation as an approximation
problem in which we try to minimize the number of manip-
ulators required. We propose two new approximation meth-
ods. These methods are based on intuitions from bin packing
and multiprocessor scheduling. Experiments show that these
methods significantly outperform the previous best known
approximation method. They find optimal manipulations in
the vast majority of the randomly generated elections tested.

Background
The Borda rule is a scoring rule proposed by Jean-Charles de
Borda in 1770. Each voter ranks the m candidates. A can-
didate receives a score of m− k for appearing in kth place.
The candidate with the highest aggregated score wins the
election. As is common in the literature, we will break ties in
favour of the coalition of the manipulators. The Borda rule is
used in parliamentary elections in Slovenia and, in modified
form, in elections within the Pacific Island states of Kiribati
and Nauru. The Borda rule or modifications of it are also
used by many organizations and competitions including the
Robocup autonomous robot soccer competition, the X.Org
Foundation, the Eurovision song contest, anf in the election
of the Most Valuable Player in major league baseball. The
Borda rule has many good features. For instance, it never
elects the Condorcet loser (a candidate that loses to all oth-
ers in a majority of head to head elections). However, it may
not elect the Condorcet winner (a candidate that beats all
others in a majority of head to head elections).

We will number candidates from 1 to m. We suppose a
coalition of n agents are collectively trying to manipulate a
Borda election to ensure a preferred candidate d wins. We
let s(i) be the score candidate i receives from the votes cast
so far. A score vector 〈s(1), . . . , s(m)〉 gives the scores of
the candidates from a set of votes. Given a set of votes,



we define the gap of candidate i as g(i) = s(d) + n(m −
1) − s(i). For d to win, we need additional votes that add
a score to candidate i which is less than or equal to g(i).
Note that if g(i) is negative for any i, then d cannot win and
manipulation is impossible.

Our NP-hardness proof uses a reduction from a special-
ized permutation problem that is strongly NP-complete (Yu,
Hoogeveen, & Lenstra 2004).

Definition 1 (Permutation Sum) Given n integers X1 ≤
. . . ≤ Xn where

∑n
i=1Xi = n(n + 1), do there exist two

permutations σ and π of 1 to n such that σ(i)+π(i) = Xi?

One of our main contributions is to prove that computing
a manipulation of the Borda rule is NP-hard, settling an open
problem in computational social choice.

Complexity of manipulation
The unweighted coalition manipulation problem (UCM)
is to decide if there exist votes for a coalition of un-
weighted manipulators so that a given candidate wins. As in
(Bartholdi, Tovey, & Trick 1989), we suppose that the ma-
nipulators have complete knowledge about the scores given
to the candidates from the votes of the non-manipulators.

Theorem 1 Unweighted coalition manipulation for the
Borda rule is NP-complete with two manipulators.

Proof: Clearly the problem is in NP. A polynomial witness
is simply the votes that the manipulators cast which make
the chosen candidate win.

To show NP-hardness, we reduce a Permutation Sum
problem over n integers, X1 to Xn, to a manipulation prob-
lem with n + 3 candidates. By Lemma 1, we can construct
an election in which the non-manipulators cast votes to give
the score vector:

〈C, 2(n+2)−X1+C, . . . , 2(n+2)−Xn+C, 2(n+2)+C, y〉

where C is a constant and y ≤ C. We claim that two ma-
nipulators can make candidate 1 win such an election iff the
Permutation Sum problem has a solution.

(⇒) Suppose we have two permutations σ and π of 1 to
n with σ(i) + π(i) = Xi. We construct two manipulating
votes which have the scores:

〈n+ 2, σ(1), . . . , σ(n), 0, n+ 1〉

〈n+ 2, π(1), . . . , π(n), 0, n+ 1〉
Since σ(i) + π(i) = Xi, these give a total score vector:

〈2(n+2)+C, 2(n+2)+C, . . . , 2(n+2)+C, 2(n+1)+y〉

As y ≤ C and we tie-break in favour of the manipulators,
candidate 1 wins.

(⇐) Suppose we have a successful manipulation. To en-
sure candidate 1 beats candidate n + 2, both manipulators
must put candidate 1 in first place. Similarly, both manipu-
lators must put candidate n + 2 in last place otherwise can-
didate n + 2 will will beat our preferred candidate. Hence
the final score of candidate 1 is 2(n + 2) + C. The gap be-
tween the final score of candidate 1 and the current score of
candidate i + 1 (where 1 ≤ i ≤ n) is Xi. The sum of these

gaps is n(n+ 1). If any candidate 2 to n+ 1 gets a score of
n+1 then candidate 1 will be beaten. Hence, the two scores
of n + 1 have to go to the least dangerous candidate which
is candidate n+ 3.

The votes of the manipulators are thus of the form:

〈n+ 2, σ(1), . . . , σ(n), 0, n+ 1〉

〈n+ 2, π(1), . . . , π(n), 0, n+ 1〉

Where σ and π are two permutations of 1 to n. To ensure
candidate 1 beats candidate j for j ∈ [1, n], we must have:

2(n+ 2)−Xj + C + σ(j) + π(j) ≤ 2(n+ 2) + C

Rearranging this gives:

σ(j) + π(j) ≤ Xj

Since
∑n

i=1Xi = n(n+1) and
∑n

i=1 σ(i) =
∑n

i=1 π(i) =
n(n+1)

2 , there can be no slack in any of these inequalities.
Hence,

σ(j) + π(j) = Xj

That is, we have a solution of the Permutation Sum problem.
2

Recall that we have assumed that the manipulators have
complete knowledge about the scores from the votes of the
non-manipulators. The argument often put forward for such
an assumption is that partial or probabilistic information
about the votes of the non-manipulators will add to the com-
putational complexity of computing a manipulation.

Approximation methods
NP-hardness only bounds the worst-case complexity of
computing a manipulation. Given enough manipulators, we
can easily make any candidate win. We consider next min-
imizing the number of manipulators required. For exam-
ple, REVERSE is a simple approximation method proposed
to compute Borda manipulations (Zuckerman, Procaccia, &
Rosenschein 2008). The method constructs the vote of each
manipulator in turn: candidate d is put in first place, and the
remaining candidates are put in reverse order of their cur-
rent Borda scores. The method continues constructing ma-
nipulating votes until d wins. A long and intricate argument
shows that REVERSE constructs a manipulation which uses
at most one more manipulator than is optimal.

Example 1 Suppose we have 4 candidates, and the 2 non-
manipulators have cast votes: 3 > 1 > 2 > 4 and 2 > 3 >
1 > 4. Then we have the score vector 〈3, 4, 5, 0〉. We use
REVERSE to construct a manipulation that makes candidate
4 win. REVERSE first constructs the vote: 4 > 1 > 2 > 3.
The score vector is now 〈5, 5, 5, 3〉. REVERSE next con-
structs the vote: 4 > 1 > 2 > 3. (It will not matter
how ties between 1, 2 and 3 are broken). The score vector
is now 〈7, 6, 5, 6〉. Finally, REVERSE constructs the vote:
4 > 3 > 2 > 1. The score vector is 〈7, 7, 7, 9〉. Hence,
REVERSE requires 3 manipulating votes to make candidate
4 win. As we see later, this is one more vote than the optimal.



Manipulation matrices
We can view REVERSE as greedily constructing a manipu-
lation matrix. A manipulation matrix is an n by m matrix,
A where A(i, j) = k iff the ith manipulator adds a score of
k to candidate j. A manipulation matrix has the properties
that each of the n rows is a permutation of 0 to m − 1, and
the sum of the jth column is less than or equal to g(j), the
maximum score candidate j can receive without defeating d.
REVERSE constructs this matrix row by row.

Our two new approximation methods break out of the
straightjacket of constructing a manipulation matrix in row
wise order. They take advantage of an interesting result that
relaxes the constraint that each row is a permutation of 0 to
m − 1. This lets us construct a relaxed manipulation ma-
trix. This is an n by m matrix that contains n copies of 0 to
m− 1 in which the sum of the jth column is again less than
or equal to g(j). In a relaxed manipulation matrix, a row
can repeat a number provided other rows compensate by not
having the number at all.

Theorem 2 Suppose there is an n by m relaxed manipula-
tion matrix A. Then there is n by m manipulation matrix B
with the same column sums.

Proof: By induction on n. In the base case, n = 1 and we
just set B(1, j) = A(1, j) for j = 1 . . . ,m. In the inductive
step, we assume the theorem holds for all relaxed manipu-
lation matrices with n − 1 rows. Let h(i) be the sum of the
ith column of A. We use a perfect matching in a suitable
bipartite graph to construct the first row of B and then ap-
peal to the induction hypothesis on an n − 1 by m relaxed
manipulation matrix constructed by removing the values in
the first row from A.

We build a bipartite graph between the vertices Vi and
Wj for i ∈ [0,m − 1] and j ∈ [1,m]. Vi represent the
scores assigned to the first row of B, whilst Wj represent
the columns of A from where these will be taken. We add
the edge (Vi,Wj) to this bipartite graph for each i ∈ [0,m−
1],j ∈ [1,m] and k ∈ [1, n] where A(k, j) = i. Note that
there can be multiple edges between any pair of vertices. By
construction, the degree of each vertex is n.

Suppose we take any U ⊆ {Vi|i ∈ [0,m − 1]}. By
a simple counting argument, the neighborhood of U must
be at least as large as U . Hence, the Hall condition holds
and a perfect matching exists (Hall 1935). Consider an edge
(Vi,Wj) in such a perfect matching. We construct the first
row of B by setting B(1, j) = i. As this is a matching, each
i ∈ [0,m− 1] occurs once, and each column is used exactly
one time. We now construct an n − 1 by m matrix from A
by removing one element equal to B(1, j) from each col-
umn j. By construction, each value i ∈ [0,m − 1] occurs
n − 1 times, and the column sums are now h(j) − B(1, j).
Hence it is a relaxed manipulation matrix. We can therefore
appeal to the induction hypothesis. This gives us an n by m
manipulation matrix B with the same column sums as A. 2

We can extract from this proof a polynomial time method
to convert a relaxed manipulation matrix into a manipulation
matrix. Hence, it is enough to propose new approximation
methods that construct relaxed manipulation matrices. This
is advantageous for greedy methods like those proposed here

as we have more flexibility in placing later entries into good
positions in the manipulation matrix.

Largest Fit
Our first approximation method, LARGEST FIT is inspired
by bin packing and multiprocessor scheduling. Constructing
an n by m relaxed manipulation matrix is similar to packing
n objects intom bins with a constraint on the capacity of the
different bins. In fact, the problem is even similar to schedul-
ing nm unit length jobs on n different processors with a
constraint on the total memory footprint of the n different
jobs running at every clock tick. Krause et al. have pro-
posed a simple heuristic for this problem that schedules the
unassigned job with the largest memory requirement to the
time step with the maximum remaining available memory
that has less than n jobs assigned (Krause, Shen, & Schwet-
man 1975). If no time step exists that can accommodate this
job, then the schedule is lengthened by one step.

LARGEST FIT works in a similar way to construct a re-
laxed manipulation matrix. It assigns the largest unallocated
score to the largest gap. More precisely, it first assigns n
instances of m − 1 to column d of the matrix (since it is
best for the manipulators to put d in first place in their vote).
It then allocates the remaining (n− 1)m numbers in reverse
order to the columns corresponding to the candidate with the
current smallest score who has not yet received n votes from
the manipulators. Unlike REVERSE, we do not necessarily
fill the matrix in row wise order.

Example 2 Consider again the last example. We start
with the score vector 〈3, 4, 5, 0〉. One manipulator alone
cannot increase the score of candidate 4 enough to beat
2 or 3. Therefore, we need at least two manipulators.
LARGEST FIT first puts two 3s in column 4 of the relaxed
manipulation matrix. This gives the score vector 〈3, 4, 5, 6〉.
The next largest score is 2. LARGEST FIT puts this into col-
umn 1 as this has the larger gap. This gives the score vector
〈5, 4, 5, 6〉. The next largest scores is again 2. LARGEST FIT
puts this into column 2 giving the score vector 〈5, 6, 5, 6〉.
The two next largest scores are 1. LARGEST FIT puts them
in columns 1 and 3 giving the score vector 〈6, 6, 6, 6〉. Fi-
nally, the two remaining scores of 0 are put in columns 2
and 3 so all columns contain two scores. This gives a re-
laxed manipulation matrix corresponding to the manipulat-
ing votes: 4 > 2 > 1 > 3 and 4 > 1 > 3 > 2. With
these votes, 4 wins based on the tie-breaking rule. Unlike
REVERSE, LARGEST FIT constructs the optimal manipula-
tion with just two manipulators.

Average Fit
Our second approximation method, AVERAGE FIT takes ac-
count of both the size of the gap and the number of scores
still to be added to each column. If two columns have the
same gap, we want to choose the column that contains the
fewest scores. To achieve this, we look at the average score
required to fill each gap: that is, the size of the gap di-
vided by the number of scores still to be added to the col-
umn. AVERAGE FIT puts the largest unassigned score pos-
sible into the column which will accommodate the largest



average score. AVERAGE FIT does not allocate the largest
unassigned score but the largest such score that will fit into
the gap. This avoids defeating d where it is not necessary. If
two or more columns can accommodate the same largest av-
erage score, we tie-break either arbitrarily or on the column
containing fewest scores. The latter is more constrained and
worked best experimentally. However, it is possible to con-
struct pathological instances on which the former is better.

Theoretical properties
We show that LARGEST FIT is incomparable to REVERSE
since there exists an infinite family of problems on which
LARGEST FIT finds the optimal manipulation but REVERSE
does not, and vice versa. Full proofs of Theorems 3–4 can
be found in (Davies et al. 2010).
Theorem 3 For any k, there exists a problem with 2k + 2
candidates on which LARGEST FIT finds the optimal 2 vote
manipulation but REVERSE finds a 3 vote manipulation.
Proof: (Sketch) Example 1 demonstrates a problem with 4
candidates on which LARGEST FIT finds the optimal 2 vote
manipulation but REVERSE finds a 3 vote manipulation. We
can generalize Example 1 to 2k + 2 candidates. 2

Unlike REVERSE, LARGEST FIT can use more than one
extra manipulator than is optimal. In fact the number of extra
manipulators used by LARGEST FIT is not bounded.
Theorem 4 For any non-zero k divisible by 36, there exists
a problem with 4 candidates on which REVERSE finds the
optimal 2k vote manipulation but LARGEST FIT requires at
least 2k + k/9− 3 votes to manipulate the result.
Proof: (Sketch) Suppose 2k non-manipulators vote 1 >
2 > 3 > 4 and we want to find a manipulation in which
candidate 4 wins. REVERSE finds the optimal 2k vote ma-
nipulation in which every manipulator votes 4 > 3 > 2 > 1.
On the other hand, if we have 2k + k/9 − 4 or fewer
rows in a relaxed manipulation matrix then it is possible to
show that LARGEST FIT will place scores in one of the first
three columns that exceed the score of candidate 4. Hence
LARGEST FIT needs 2k+ k/9− 3 or more manipulators. 2

AVERAGE FIT is also incomparable to LARGEST FIT.
Like REVERSE, it finds the optimal manipulations on
the elections in the last proof. So far we have not
found any instances where REVERSE performs better
than AVERAGE FIT. However, there exist examples on
which LARGEST FIT finds the optimal manipulation but
AVERAGE FIT does not.
Theorem 5 There exists instances on which LARGEST FIT
finds the optimal manipulation but AVERAGE FIT requires
an additional vote.
Proof: (Sketch) We failed to find a simple example but a
computer search using randomly generated instances gave
the following. Consider an election in which the non-
manipulators wish the last candidate to win, given the score
vector:

〈41, 34, 30, 27, 27, 26, 25, 14〉
On this problem, LARGEST FIT finds the optimal manipu-
lation that makes the final candidate win but AVERAGE FIT
requires an additional vote. 2

Experimental results
To test the performance of these approximation methods in
practice, we ran some experiments. Our experimental setup
is based on that in (Walsh 2010). We generated either uni-
form random votes or votes drawn from a Polya Eggen-
berger urn model. In the urn model, votes are drawn from an
urn at random, and are placed back into the urn along with b
other votes of the same type. This captures varying degrees
of social homogeneity. We set b = m! so that there is a 50%
chance that the second vote is the same as the first. In both
models, we generated between 22 and 27 votes for varying
m. We tested 1000 instances at each problem size. To de-
termine if the returned manipulations are optimal, we used a
simple constraint satisfaction problem.

Uniform Elections
We were able to find the optimal manipulation in 32502
out of the 32679 distinct uniform elections within the 1
hour time-out. Results are shown in Figure 1. Both
LARGEST FIT and AVERAGE FIT provide a significant im-
provement over REVERSE, solving 83% and 99% of in-
stances to optimality. REVERSE solves fewer problems
to optimality as the number of candidates increases, while
AVERAGE FIT does not seem to suffer from this problem as
much: AVERAGE FIT solved all of 4 candidate instances and
98% of the 128 candidate ones. We note that in every one of
the 32502 instances, if REVERSE found an n vote manipu-
lation either AVERAGE FIT did too, or AVERAGE FIT found
an (n− 1) vote manipulation.

Urn Elections
We were able to find the optimal manipulation for 31529 out
of the 31530 unique urn elections within the 1 hour time-
out. Figure 2 gives results. REVERSE solves about the same
proportion of the urn instances as uniform instances, 76%.
However, the performance of LARGEST FIT drops signifi-
cantly. It is much worse than REVERSE solving only 42%
of instances to optimality. We saw similar pathological be-
haviour with the correlated votes in the proof of Theorem
4. The good performance of AVERAGE FIT is maintained.
It found the optimal manipulation on more than 99% of the
instances. It never lost to REVERSE and was only beaten by
LARGEST FIT on one instance in our experiments.

Related problems
There exists an interesting connection between the problem
of finding a coalition of two manipulators for the Borda vot-
ing rule and two other problems in discrete mathematics: the
problem of finding a permutation matrix with restricted di-
agonals sums (PMRDS) (Brunetti, Lungo, Del, Gritzmann
& Vries 2008) and the problem of finding multi Skolem se-
quences (Nordh 2010). We consider this connection for two
reasons. First, future advances in these adjacent areas may
give insights into new manipulation algorithms or into the
complexity of manipulation. Second, this connection reveals
an interesting open case for Borda manipulation – Nordh has
conjectured that it is polynomial when all gaps are distinct.



m # Inst. REVERSE LARGEST FIT AVERAGE FIT LARGEST FIT beat AVERAGE FIT
4 2771 2611 2573 2771 0
8 5893 5040 5171 5852 2

16 5966 4579 4889 5883 3
32 5968 4243 4817 5879 1
64 5962 3980 4772 5864 3

128 5942 3897 4747 5821 2
Total 32502 24350 26969 32070 11

% 75 83 99 <1

Figure 1: Number of uniform elections for which each method found an optimal manipulation.

m # Inst. REVERSE LARGEST FIT AVERAGE FIT LARGEST FIT beat AVERAGE FIT
4 3929 3666 2604 3929 0
8 5501 4709 2755 5496 0

16 5502 4357 2264 5477 1
32 5532 4004 2008 5504 0
64 5494 3712 1815 5475 0

128 5571 3593 1704 5565 0
Total 31529 24041 13150 31446 1

% 76 42 99.7 <1

Figure 2: Number of urn elections for which each method found an optimal manipulation.

A permutation matrix is an n by n Boolean matrix which
is obtained from an identity matrix by a permutation of its
columns. Hence, the permutation matrix contains a single
value 1 in each row and each column. Finding a permuta-
tion matrix such that the sums of its diagonal elements form
a given sequence of numbers (d1, . . . , d2n−1) is the permu-
tation matrix with restricted diagonals sums problem. This
problem occurs in discrete tomography, where we need to
construct a permutation matrix from its X-rays for each row,
column and diagonal. The X-ray values for each row and
column are one, while the values for the diagonal are repre-
sented with the sequence (d1, . . . , d2n−1).

We transform a manipulation problem with n candidates
and 2 manipulators such that

∑n
i=1 gi = n(n− 1) to a PM-

RDS problem. To illustrate the transformation we use the
following example with 5 candidates. Let 〈4, 4, 6, 6, 0〉 be a
score vector, where our favorite candidate has 0 score, and
〈4, 4, 2, 2〉 be the corresponding gap vector. We label rows
of a permutation matrix with scores of the first manipula-
tor and columns of a permutation matrix with the reversed
scores of the second manipulator. We label each element of
the matrix with the sum of its row and column labels. Fig-
ure 3(a) shows the labelling for our example in gray.

Note that each element on a diagonal is labelled with the
same value. Therefore, each diagonal labelled with value
k represents the gap of size k in the manipulation problem.
Hence, the sum of the diagonal di labelled with k encodes
the number of occurrences of gaps of size k. For example,
d3 = 2 ensures that there are two gaps of size 2 and d5 = 2
ensures that there are two gaps of size 4. The remaining
diagonal sums, di, i ∈ {1, 2, 4, 6, 7}, are fixed to zero.

Consider a solution of PMRDS (Figure 3(b)). Cell
P (0, 1) contains the value one. Hence, we conclude that
the first manipulator gives the score 0 and the second gives

the score 2 to a candidate with the gap 2. Similarly, we ob-
tain that the first manipulator gives the scores 〈1, 3, 0, 2〉 and
the second gives the scores 〈3, 1, 2, 0〉 to fill gaps 〈4, 4, 2, 2〉.
As the number of ones in each diagonal is equal to the num-
ber of occurrences of the corresponding gap, the constructed
two manipulator ballots make our candidate a co-winner.

Finding a coalition of two manipulators for the Borda vot-
ing rule is also connected to the problem of finding multi
Skolem sequences used for the construction of Steiner triple
system (Nordh 2010). Given a multiset of positive integers
G we need to decide whether there exists a partition of a set
H = {1, . . . , 2n} into a set of pairs (hi, h

′
i), i = 1, . . . , n

so that G ≡ {hi − h′i|hi, h′i ∈ H}. There is a reduction
from a manipulation problem with n candidates and 2 ma-
nipulators such that

∑n
i=1 gi = n(n−1) to a special case of

multi Skolem sequences with
∑n

i=1Gi = n2 similar to the
reduction from a scheduling problem in (Nordh 2010) 1.

Conclusions
We have proved that it is NP-hard to compute how to ma-
nipulate the Borda rule with just two manipulators. This
resolves one of the last open questions regarding the com-
putational complexity of unweighted coalition manipulation
for common voting rules. To evaluate whether such com-
putational complexity is important in practice, we have pro-
posed two new approximation methods that try to minimize
the number of manipulators. These methods are based on
ideas from bin packing and multiprocessor scheduling. We
have studied the performance of these methods both theo-
retically and empirically. Our best method finds an optimal
manipulation in almost all of the elections generated.

1The reduction implicitly assumes that
∑n

i=1
Gi = n2 as the

author confirmed in a private communication.



(3) (2) (1) (0)

(0)

(1)

(2)

(3) (4)

(5)

(6) (5)

(4)

(4)

(3)

(3)

(3)

(3)

(2)

(2)

(2)

(1)

(1)

(0)

d3=2

d2=0

d1=0

d7=0 d6=0 d5=2 d4=0

1

1

1

1 00

00

0

0 0 0

0 0

0

0 d3=2

d2=0

d1=0

d7=0 d6=0 d5=2 d4=0

(a) (b)

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Figure 3: (a) A labelling of a permutation matrix; (b) a solution of PMRDS

Acknowledgements
Jessica Davies is supported by the National Research Coun-
cil of Canada. George Katsirelos is supported by the ANR
UNLOC project ANR 08-BLAN-0289-01. Nina Narodytska
and Toby Walsh are supported by the Australian Department
of Broadband, Communications and the Digital Economy,
the ARC, and the Asian Office of Aerospace Research and
Development (AOARD-104123).

Appendix: Constructing votes with target sum
Our NP-hardness proof requires a technical lemma that we
can construct votes with a given target sum.
Lemma 1 Given integers X1 to Xm there exist votes over
m+1 candidates and a constant C such that the final score
of candidate i is Xi + C for 1 ≤ i ≤ m and for candidate
m+ 1 is y where y ≤ C.
Proof: Our proof is inspired by Theorem 5.1 (Xia, Conitzer,
& Procaccia 2010). We show how to increase the score of a
candidate by 1 more than the other candidates except for the
last candidate whose score increases by 1 less. For instance,
suppose we wish to increase the score of candidate 1 by 1
more than candidates 2 to m and by 2 more than candidate
m+ 1. Consider the following pair of votes:

1 > m+ 1 > 2 > . . . > m− 1 > m

m > m− 1 > . . . > 2 > 1 > m+ 1

The score of candidate 1 increases by m + 1, of candidates
2 to m by m, and of candidate m+1 by m−1. By repeated
construction of such votes, we can achieve the desired result.
2

References
Bartholdi, J., and Orlin, J. 1991. Single transferable
vote resists strategic voting. Social Choice and Welfare
8(4):341–354.
Bartholdi, J.; Tovey, C.; and Trick, M. 1989. The computa-
tional difficulty of manipulating an election. Social Choice
and Welfare 6(3):227–241.

Brunetti, S.; Lungo, A.;A. Del; Gritzmann, P. and de Vries,
S. 2008. On the reconstruction of binary and permutation
matrices under (binary) tomographic constraints. Theor.
Comput. Sci. 406(1–2):63–71.
Conitzer, V.; Sandholm, T.; and Lang, J. 2007. When are
elections with few candidates hard to manipulate. JACM
54.
Davies, J.; Katsirelos, G.; Narodytska, N.; and Walsh,
T. 2010. An empirical study of Borda manipulation. In
COMSOC-10.
Hall, P. 1935. On representatives of subsets. Journal of the
London Mathematical Society 26–30.
Krause, K. L.; Shen, V. Y.; and Schwetman, H. D.
1975. Analysis of several task-scheduling algorithms for
a model of multiprogramming computer systems. JACM
22(4):522–550.
Nordh, G. 2010. A note on the hardness of Skolem-type
sequences. Discrete Appl. Math. 158(8):63–71.
Walsh, T. 2010. An empirical study of the manipulability
of single transferable voting. In Proc. of the 19th European
Conf. on Artificial Intelligence (ECAI-2010). IOS Press.
Xia, L.; Zuckerman, M.; Procaccia, A.; Conitzer, V.; and
Rosenschein, J. 2009. Complexity of unweighted coali-
tional manipulation under some common voting rules. In
Proc. of 21st IJCAI, 348–353.
Xia, L.; Conitzer, V.; and Procaccia, A. 2010. A schedul-
ing approach to coalitional manipulation. In Parkes, D.;
Dellarocas, C.; and Tennenholtz, M., eds., Proc. 11th ACM
Conference on Electronic Commerce (EC-2010), 275–284.
Yu, W.; Hoogeveen, H.; and Lenstra J.K. 2004. Minimiz-
ing Makespan in a Two-Machine Flow Shop with Delays
and Unit-Time Operations is NP-Hard. J. Scheduling 7(5):
333-348.
Zuckerman, M.; Procaccia, A.; and Rosenschein, J. 2009.
Algorithms for the coalitional manipulation problem. Arti-
ficial Intelligence. 173(2):392-412.


