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Abstract. The graph coloring problem appears in numerous applica-
tions, yet many state-of-the-art methods are hardly applicable to real
world, very large, networks. The most efficient approaches for massive
graphs rely on “peeling” the graph of its low-degree vertices and focus on
the maximum k-core where k is some lower bound on the chromatic num-
ber of the graph. However, unless the graphs are extremely sparse, the
cores can be very large, and lower and upper bounds are often obtained
using greedy heuristics.
In this paper, we introduce a combined approach using local search to
find good quality solutions on massive graphs as well as locate small
subgraphs with potentially large chromatic number. The subgraphs can
be used to compute good lower bounds, which makes it possible to solve
optimally extremely large graphs, even when they have large k-cores.

1 Introduction

The Vertex Coloring Problem (VCP) asks for the minimum number of colors
that can take the vertices of a graph G so that no two adjacent vertices share a
color. This number χ(G) is called the chromatic number of the graph.

The VCP has numerous applications. For instance, when allocating frequen-
cies, devices on nearby locations should work on different frequencies to avoid
interference. The chromatic number of this distance-induced graph is thus the
minimum span of required frequencies [1, 22]. In compilers, finding an optimal
register allocation is a coloring problem on an interference graph of value live
ranges [6]. In timetabling, assigning time slots to lectures so that no two classes
attended by a common subset of student happen in parallel is a VCP [8].

The best performing approaches to the VCP often do not scale to extremely
large graphs such as, for instance, social networks. In fact, on networks with
several million nodes, even local search methods are seldom used and the best
approaches rely on scale reduction and greedy heuristics both for lower and upper
bounds [16, 27]. Indeed, the main technique used for reducing the graph consists
in removing vertices of degree lower than some lower bound on the chromatic
number. This technique might be very effective on sparse graphs especially when
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a maximum or a maximal clique provides a good lower bound. Several real-
world extremely large sparse graphs can be efficiently tackled, even via complete
algorithms, after such preprocessing. However, even relatively sparse graphs can
have a large core of vertices whose degree within the core is higher than the
chromatic number. In this case, there are not many practical techniques for upper
bounds and most proposed approaches rely on greedy heuristics, in particular
Brelaz’ Dsatur [5]. Likewise, in this context there is virtually no method for
computing a lower bound other than finding a large clique in the graph. As a
result, there is little hope to optimally solve an instance with a large core, and
whose chromatic number is strictly larger than the size of its largest clique.

In this paper we consider two datasets of very large graphs. The first set,
denoted dimacs10, contains 30 graphs from the 10th DIMACS implementation
challenge [3]. It consists of two subclasses, the former containing graphs with
heavy-tailed distribution of degrees and the latter contains quasi-regular graphs.
The second set, reffered to as snap, contains 75 graphs from the Stanford Large
Network Dataset Collection [15]. These graphs correspond to social, citation,
collaboration, communication, road or internet networks. They range from tens
of thousands to several million vertices and all have extremely low density.

Whereas about half of these graphs are easy or even trivial for the state-
of-the-art approaches, the other half remain too large and hard to color even
after preprocessing. We show that by combining several methods including local
search, heuristics and complete algorithms, we can close a significant proportion
(close to 40%) of these hardest instances, even if they contain hundreds of thou-
sands of vertices after preprocessing and even if their chromatic number is larger
than their clique number. We survey the related work in section 2, describe our
main contribution, a method to obtain good lower bounds on very large graphs
in section 3 and an effective local search approach to obtain good upper bounds
in section 4. Finally we report the results of an experimental comparison of our
method with the state of the art on the datasets described above.

2 Related Work

Heuristic methods are very relevant since they easily scale to very large inputs.
In particular, the Dsatur heuristic proposed by Brelaz [5] is instrumental in
the state-of-the-art method on the datasets we consider, FastColor [16]. The
Dsatur heuristic builds a coloring C mapping vertices to colors. It iteratively
choses a vertex from a set U initially containing all vertices V of the graph.
The chosen vertex v is the one with maximum saturation degree δsat(v) defined
as the number of colors among its neighbors N(v), i.e., δsat(v) = |{C(u) | u ∈
(N(v)\U)}|. In case of a tie, the vertex with maximum degree |N(v)| is selected.
Then it sets C(v) to the smallest possible color min(N\{C(u) | u ∈ (N(v)\U)}).

Notice that Dsatur-based branch and bound algorithms [9, 25] are among
the best complete methods, alongside column generation approaches [18, 19] and
SAT-based models and hybrid algorithms [11, 24, 26, 29]. However, none of these
scale to graphs with more than a few thousands vertices.



2.1 Local Search

Local search and meta heuristics have long been applied to graph coloring (e.g.
[12]), and with great success. All the best known colorings on the commonly used
dataset from the second dimacs challenge [13] were obtained by such methods3.

In principle, local search approaches seem very well suited for coloring large
graphs, and indeed most algorithms scale very well to relatively large graphs.
However, surprisingly, we could not find a report of a local search or a meta-
heuristic approach applied to the large graphs of the snap and dimacs10 datasets,
or on graphs of similar magnitude.

When the number of vertices grows really large, then one must be very care-
ful about the implementation details. As a matter of fact, several off-the-shelf
algorithms we tried used data structures with a space complexity quadratic in
the number of vertices, and are de facto irrelevant. Another critical point is the
size of the neighborhood. For instance, the most common tabu scheme consid-
ers all the (non-tabu) moves of any node sharing a color with a neighbor, to a
different color. Typical methods evaluate every such move and choose the one
that decreases the most the number of conflicts. The number of such moves to
consider in a graph with millions of vertices can be prohibitive, especially when
starting from low quality initial solutions. The state-of-the-art memetic algo-
rithm HEAD [20] uses a similar tabu search, and although we made superficial
changes to make it capable of loading massive graphs in memory, it performed
poorly on those. After a non-exhaustive review of the literature and of the avail-
able software, our belief is that if most of these methods could be adapted to
extremely large and sparse graphs, however, it would require some non-trivial
implementation work.

Blöchliger and Zufferey’s local search algorithm [4] appears to be relatively
promising in this context. The idea is to try to complete a partial coloring, i.e., a
partition of the vertices into of k disjoint independent sets {C1, . . . , Ck} plus an
extra set U of “uncolored” vertices. A move consists in swapping a node v ∈ U
with the vertices N(v)∩Ci for some color i ∈ {1, . . . , k}. A move (v, i) minimizing
|N(v)∩Ci| is randomly chosen. In order to escape local minima, after each move
(v, i), the moves (u, i) for u ∈ N(v) are added to a tabu list so that v will stay
with color i for a given number of iterations. When the set U becomes empty,
a k-coloring is obtained and the process can continue by randomly eliminating
one color i, that is, setting U = Ci and removing Ci from the partition.

2.2 Independent Set Extraction

Whereas sequence-based coloring heuristics (such as Dsatur) explore the ver-
tices and insert them into the smallest possible color class (or independent set),
Leighton’s RLF heuristic [14] extracts one maximal independent set (or color
class) at a time. This technique has been shown to be more effective than Dsatur
on some graphs, however it has a higher computational cost.

3 http://www.info.univ-angers.fr/~porumbel/graphs/



Recent effective methods for large graphs rely on this principle. For instance,
Hao and Wu [10] recently proposed a method which iteratively extracts maximal
independent sets until the graphs contains no more than a given number of
vertices. Then, any algorithm can be used on the residual graph to produce a k-
coloring which can be trivially extended to a k+p-coloring of the whole graph if
p independent sets have been extracted. Moreover, the authors show that it may
be effective to iteratively expand the residual graph by re-inserting the vertices
of some independent set extracted in the first phase and run again the coloring
method on the larger residual graph. This method, however, was not tested on
graphs larger than a few thousand vertices.

2.3 Peeling-based Approaches

The so-called “peeling” procedure is an efficient scale reduction technique in-
troduced by Abello et al. [2] for the maximum clique problem. Since vertices of
(k + 1)-cliques have each at least k neighbors, one can ignore vertices of degree
k−1 or less. As observed in [27], this procedure corresponds to restricting search
to the maximum (χlow − 1)-core of G where χlow is some lower bound on ω(G):

Definition 1 (k-Core and denegeracy). A subset S ⊆ V is called a k-core
of the the graph G = (V,E) if the minimum degree of any vertex in the subgraph
of G induced by S is k. The minimum value of k for which G has a non-empty
k-core is called the degeneracy of G.

As observed by Verma et al. [27], the peeling technique can also be used for
graph coloring, since low-degree vertices can be colored greedily.

Theorem 1 (Verma et al. 2015). G is k-colorable if and only if the maximum
(k − 1)-core of G is k-colorable.

Indeed, starting from a k-coloring of the maximum (k−1)-core of G, one can
explore the vertices of G that do not belong to the core and add them back in an
order (the inverse of the degeneracy ordering) such that any vertex is preceded
by at most k − 1 of its neighbors. It follows that these extra vertices can each
be colored without introducing a k + 1th color.

This preprocessing technique can be extremely effective on very sparse graphs,
and computing a lower bound of the chromatic number is relatively easy: com-
puting the clique number of a graph is NP-hard, but in practice it is much easier
than computing its chromatic number. However, the (χlow − 1)-core might be
too large, and therefore a second use of the peeling technique was proposed in
[27]. The idea is to find a coloring of the maximum (χup − 2)-core of G where
χup is an upper bound on χ(G). The (χup − 2)-core has several good properties:
it is often small, its chromatic number is a lower bound on χ(G), and if there
exists such a k-coloring with k < χup, then it can be extended, in the worst case,
to a (χup − 1)-coloring of G.

Therefore, Verma et al. proposed the following method: Starting from the
bounds χlow ≤ χ(G) ≤ χup, the algorithm solves the maximum (χup−2)-core of



G to optimality, and extends the corresponding k-coloring greedily following the
inverse degeneracy order to a k′-coloring. Then it sets χlow to max(χlow, k) and
χup to k′. The algorithm converges since since χlow cannot decrease and χup is
guaranteed to decrease at each step.

Unfortunately, some graphs simply do not have small k-cores, even for k
larger than their chromatic number, so this method is limited to extremely sparse
graphs. Moreover, notice that the core must be solved to optimality in order to
extract relevant information from the iteration and converge.

The approach of Lin et al. [16] also uses peeling, but in a slightly different
way. A degree-bounded independent set is an independent set whose vertices all
have a degree strictly smaller than a lower bound χlowon the chromatic number.
Their method iteratively finds a maximal clique using a very effective sampling-
based heuristic; removes a k-bounded independent set where k is the size of the
clique from the graph; and runs Dsatur in order to find an upper bound.

This method is very effective, outperforming the approach of Verma et al.
on graphs with large cores. However, notice that the vertices in a k-bounded
independent set cannot be in a (k−1)-core, and therefore this variant of peeling
is less effective than Verma’s. The two main components are the method to find
a clique and the Dsatur heuristic to find upper bounds. The former essentially
samples a set of vertices to be expanded to a maximal clique. When extending a
clique, a number p of neigbors are probed and the one that maximizes the size
of the residual candidate set of vertices to expand the clique is chosen. Several
runs are performed with the parameter p growing exponentially at every run.
The latter is randomized and augmented with the recolor technique [23]: when
a new color class i is created for a vertex v, if there exist two color classes Cj , Ck
with j < k and a vertex u such that N(v) ∩ Cj = {u} and N(u) ∩ Ck = ∅, then
v and u can be recolored to j and k respectively, thus leaving the color i free.

3 Iterated Dsatur

The overwhelmingly most common lower bound technique is to find a large
clique. Several other lower bounds have been used. For instance, two extra lower
bounds were proposed in [9]: the Lovász Theta number [17] and a second lower
bound based on a mapping between coloring and independent sets on a refor-
mulation of the graph [7]. Another lower bound based on finding embedded
Mycielskian graphs [21] was proposed in [11]. Moroever, the bounds obtained by
linear relaxation of either the standard model or the set covering problem from
the branch & price approach are very strong. However, it is difficult to make any
of these methods scale up to graphs with millions of vertices.

Many graphs of the dimacs10 and snap datasets have a chromatic number
equal to their clique number. Morever, finding a maximum clique turns out to
be much easier in practice than solving the VCP. Therefore, it is often possible
to find a maximum clique and they often provide a good lower bound.

In this section, we introduce a method to solve the VCP that scales up to very
large graphs. Moreover, it may compute non-trivial lower bounds, that is, larger



Algorithm 1: Iterated Dsatur

Algorithm: I-Dsatur

Data: Graph G, Initial order O0, color assignment C0 and bounds χlow,
χup

Result: χ(G)
i← 0

while χlow < χup do
p← 1 + max{j | Ci(oik) ≤ χlow ∀k < j}
Oi+1 ← {oi1, . . . oip}
i← i+ 1
Ccore = ExactColoring(GOi)

if max(Ccore) > χlow then
χlow ← max(Ccore)
Ci ← Ci−1

else
Ci ← Ccore
(Oi, Ci)← Dsatur(Oi, Ci)
if max(Ci) < χup then

χup ← max(C ′)

return (χlow) // = χ(G)

than the clique number. As a consequence, this method can sometimes produce
optimality proofs for extremely large graphs, even when ω(G) < χ(G). The prin-
ciple is to iteratively compute a coloring with Dsatur, and optimize its prefix
up to the first occurrence of the color χlow + 1. If there exists a coloring of that
subgraph, then the next iteration of Dsatur will follow the optimized prefix,
whose length will thus increase. Otherwise, the lower bound can be incremented.

Algorithm 1 uses a variant of Dsatur which can take into account a given
total order O of a subset of the vertices and a coloring C for these vertices (it
may be a coloring of more vertices, but it is ignored for vertices not in O). This
variant assigns first vertices in the given order using the given coloring. Once
those vertices have been colored, it proceeds to color the rest of the vertices of
the graph using the standard Dsatur heuristic. The modified Dsatur returns
not only the coloring but also the total order of V that it used to produce this
coloring. In the following, we use O = 〈o1, . . . , op〉 to denote an order of a subset
of the vertices, where {o1, . . . , op} ⊆ V . Moreover, given a coloring C, we write
max(C) for the maximum color used, and C(v) for the color assigned to v.

Algorithm 1 proceeds as follows. Given initial bounds χlow and χup, as well
as a coloring and ordering that witness the upper bound, we extract the core
graph, which is the subgraph GO1 of G induced by the vertices {o1, . . . , op} where
p is the maximum index for which all vertices o1, . . . , op−1 are assigned colors
in [1, χlow]. In other words, p is the index of the first vertex that is assigned a



color greater than the current lower bound χlow. The order of these p vertices is
fixed for all subsequent runs of Dsatur. We then compute χ(GO1), using any
exact coloring algorithm. In our implementation this is the satisfiability-based
algorithm from [11]. If χ(GO1) > χlow then we can update χlow = χ(GO1). This
is because GO1 is an induced subgraph of G, so χ(GO1) is a lower bound on χ(G).
On the other hand, if χ(GO1) ≤ χlow, we fix the first p vertices to their order
and color them as in the optimal coloring of GO1 and use them as the starting
point for a run of Dsatur. In either case, we proceed to the next iteration.

Algorithm 1 converges because at every iteration a growing subset of the
vertices have their order fixed and included in the core. Indeed, if χ(GOi) > χlow,
then the lower bound is increased, which means that more vertices with be in
GOi+1 . On the other hand, if χ(GOi) ≤ χlow, then the next run of Dsatur will be
constrained to assign at least op to a color in [1, χlow], so the core graph at the
next iteration contains at least one more vertex. In the extreme, the algorithm
will terminate when GOi = G.

4 Local Search for Massive Graphs

As far as we know, the best upper bound for the datasets we consider were
obtained using either Brelaz’ heuristic [16], or by greedily extending the optimal
solution of a k-core [27]. Therefore, whether, and to which extent, local search
can help in such a case remains to be seen. In this section we describe the
modifications we made to Blöchliger and Zufferey’s tabu-search algorithm in
order to adapt it to extremely large graphs.

Initialization A first very modest, but significant, addition is a method to effi-
ciently initialize the solution of the local search. The algorithm described in [4]
is given an integer k and tries to find a k-coloring. Since our method produces
colorings during preprocessing (from the computation of the degeneracy ordering
and from Dsatur) it is immediate to initialize the solution with such a coloring
whereby the vertices of any one color class are considered “uncolored”. However,
we observed that it was important to choose a small color class, as they can be
extremely unbalanced and chosing randomly could lead to a prohibitively large
neighborhood to explore in the initial steps.

Chained Flat Moves Recall that a move consists in swapping a node v from the
set U of uncolored vertices with its neighbors N(v) ∩ Ci in some color class i.
When N(v) ∩ Ci = ∅ this is an improving move as we have one less uncolored
node. Now let call a move (v, i) such that |N(v) ∩ Ci| = {u} a flat move. We
know that no strictly improving move was possible, so if there is an improving
or a flat move involving u it is likely to be selected next. Therefore, in the event
of a flat move we greedily follow chains of flat moves from the previous vertex
until reaching an improving move, or until no flat or improving move is possible
for that vertex. This technique does not change the neighborhood, but allows to
explore it in a more greedy way and is often beneficial. Moreover, we observed



that it was relatively easy to assess if such moves were effective, by counting how
many of them lead to an improving move, and by checking their length.

Algorithm 2: Local Search

Algorithm: TabuSearch

Data: Graph G = (V,E), Coloring C, Parameters I, t
Result: A coloring of G
best← C, k ← 0
foreach v ∈ V ′, 1 ≤ i ≤ max(C) do T iv = 0
while k ≤ I do

1 c← arg mini(|Ci|)
U ← Cc
while i ≤ I and Ci 6= ∅ do

v, i← arg minu∈U,j 6=c|T j
u≤k(|N(u) ∩ Cj |)

2 if |N(v) ∩ Ci| = 1 then
repeat

C(v)← i
v′ ← v, i′ ← i
v, i← arg minu∈Ci′ ,j 6∈{c,i′}|T

j
u≤k(|N(u) ∩ Cj |)

until |N(v) ∩ Ci| = 1
if |N(v) ∩ Ci| > 1 then

C(v)← c

T i
′

v ← k + t

3 else
C(v)← i
foreach u ∈ N(v) ∩ Ci do

C(u)← c
T iu ← k + t

k ← k + 1

if U = ∅ then best← C
return best

Algorithm 2 is a pseudo-code of our implementation of Blöchliger and Zuf-
ferey’s tabu search. We denote Ci the set of vertices of color i, that is Ci = {v |
C(v) = i}. The outer loop and the color selection in line 1 are not in the original
implementation, as well as the random path of flat moves corresponding to the
lines between 2 and 3. Notice that ties are broken randomly in every “arg min”
operator. Moreover, the management of the tabu list (T iv) as well as of the it-
eration limit, and the choice of applying a random path move is more complex
than the pseudo-code shows. We set the parameters as follows.



Tabu list Here we used a relatively straightforward scheme which is in fact a
simplified version of what is done in the original code. Every 10000 iterations,
the tabu tenure parameter t is decremented, unless it is null or the delta between
the lowest and largest size for U (the set of “uncolored” vertices) is lower than
or equal to 1 since the last update of the tabu tenure. In both of the latter cases,
t is increased by its initial value (the initial value was 10 in all our experiments).

Iteration limit In order to dynamically adapt the number of iterations to the
progress made by the tabu search, we used the following policy: Let k be the
current number of iterations and I the current limit. When the limit is reached
within the outer loop, we check if there was any progress on the upper bound
χup since the last limit update. If there was some progress, then we increase the
limit by the current number of iterations (I = I + k). Now, let δ be the value of
I − k at the start of the inner loop. When the limit is reached within the inner
loop, we check if there was any progress on the number of uncolored vertices
(|U |) since the last limit update. If there was some progress, then we increase
the limit by δ, otherwise we increase it by δ/2. We used an initial limit of 250000.

Limit on chains of flat moves In some cases it is possible to explore very long
paths of flat moves hence slowing down the algorithm. We introduce a parameter
p (originally set to 1) controling the probablity 1/p of prefering such moves. Then
we simply check the average length l of these moves and their frequency f and
adjust p in consequence. In practice, we double p when l×f ≥ 20 and decrement
it when it is strictly greater than 1 and l × f ≤ 3.

5 Overall Approach

Our approach combines the peeling preprocessing from section 2, the tabu search
described in section 4 and the iterated Dsatur scheme described in section 3.

The principle we use for choosing the exact sequence of techniques is to
apply first those that have the greatest effect for the least computational cost.
Therefore, we first compute an upper bound by computing the degeneracy and
a lower bound by finding a clique. Although finding the maximum clique is NP-
hard, it turns out to be much easier than coloring in the dataset we used, so we
solve the problem exactly rather than use a heuristic. It also has a great effect on
the rest of the algorithm, as a better initial lower bound results in greater scale
reduction using peeling and hence improves all heuristics used further on. After
peeling, we first improve the upper bounds using Dsatur and then our local
search algorithm. Finally, we switch to iterated Dsatur (I-Dsatur), which is
exact and hence the most computationally expensive part of the algorithm.

One complication is that the iterated Dsatur phase is initialized with the
current best solution. If this solution was found by the local search algorithm,
there is no ordering that I-Dsatur can use to extract a core. We can produce a
relevant ordering from the local search solution simply by sorting the vertices by
saturation degree within the local search coloring4 as shown in line 2. However,

4 ties broken by overall degree



Algorithm 3: Graph Coloring

Algorithm: LS+I-Dsatur

Data: Graph G = (V,E), Parameters I, t
Result: The chromatic number of G

/* Preprocessing phase */

1 (O,D)← DegeneracyOrder(G)
χup ← max(D) + 1

χlow ← |FindClique(G)|
H ← subgraph of G induced by {ok, . . . , o|V |} with

k = max{i | j ≥ i or D(j) < χlow}
(O,C)← Dsatur(H)

χup ← max(χup,max(C))

/* Local search phase */

C ← TabuSearch(H, C, I, t)
χup ← min(χup,max(C))
foreach v ∈ V ′ do δsat(v)← |{C(u) | u ∈ N(v)}|

2 O = {o1, . . . , o|V ′|} with i < j =⇒ δsat(oi) ≥ δsat(oj)

/* Iterated Dsatur phase */

(O,C ′)← Dsatur(H, O, C)

return I-Dsatur(H, O, C’, χlow, χup)

this coloring may not use the smallest colors for the first vertices in the order,
therefore, we apply the following transformation:

We run Dsatur following the ordering O. When processing node v, we check
if the color C(v) assigned by the tabu search to v has already been mapped to
some color, if not, we map it to the minimum color c that v can take and assign
c to v. We do the same if the color C(v) happens to be already mapped to c.
Otherwise, we switch to the standard Dsatur from that point on.

The resulting coloring is similar (at least in the prefix) to the LS solution,
however it is in a form that might have been produced by Dsatur.

6 Experimental Results

Our implementaton uses dOmega [28] for finding the initial maximum clique, and
MiniCSP5 as the underlying CDCL CSP solver during the I-Dsatur phase.6

We compare it to the state of the art: the FastColor approach [16]. Unfor-
tunately, we could not compare with the approach described in [27] since the

5 Sources available at: https://bitbucket.org/gkatsi/minicsp.
6 Sources available at: https://bitbucket.org/gkatsi/gc-cdcl/src/master/.



coloring part of this code is now lost.7 However, this latter approach is dominated
by FastColor on instances with large cores, hence the hardest.

Every method was run 20 times with different random seeds and with a time
limit of one hour and a memory limit of 10GB. The memory limit was an issue
only for dOmega which exceeded the memory limit on 3 instances. We raised the
limit to 50GB in these three cases. We used 4 cluster nodes, each with 35 Intel
Xeon CPU E5-2695 v4 2.10GHz cores running Linux Ubuntu 16.04.4.

FastColor LS+I-Dsatur

|V |/|E| (scaled)
CPU time (ms) CPU time (ms)

min avg max min avg max

as-22july06 23k/48k 168/3115 13 17 21 3182 4356 6354
caidaRouterLevel 192k/609k 3425/65k 265 375 662 441 7582 40801
citationCiteseer 268k/1157k 6731/76k 533 933 1895 382 516 607
cnr-2000 326k/2739k 86/3652 1952 2250 2526 362 398 448
coAuthorsCiteseer 227k/814k 87/3741 95 155 243 223 289 356
coAuthorsDBLP 299k/978k 115/6555 161 254 410 356 425 518
coPapersCiteseer 100k/498k 130/4160 32 46 83 68 90 109
coPapersDBLP 540k/15m 337/57k 1074 1238 1419 1667 2037 2564
cond-mat-2005 40k/176k 30/435 12 32 51 28 39 55
eu-2005 333k/3949k 2414/123k 3396 3797 4617 557 651 709
in-2004 163k/2602k 343/59k 731 1664 1995 228 262 310
rgg-n-2-17-s0 131k/729k 34/262 107 210 376 159 202 242
rgg-n-2-19-s0 524k/3270k 19/170 582 1365 1768 849 1107 1357
rgg-n-2-20-s0 1049k/6892k 172/1624 1335 2607 3917 2042 2659 3443
rgg-n-2-21-s0 2097k/14m 19/171 5442 9373 13240 4975 6311 8043
rgg-n-2-22-s0 4194k/30m 20/190 8119 21840 27280 11900 13819 17512
rgg-n-2-23-s0 8389k/64m 22/230 18465 51959 67686 25125 31100 37256
rgg-n-2-24-s0 17m/133m 82/994 39562 94233 136666 49909 61154 80953
belgium osm 1441k/1550k 1239k/1348k 239 270 326 1039 1240 1527
ecology1 1000k/1998k 1000k/1998k 483 536 943 1428 1561 1702
luxembourg osm 115k/120k 93k/98k 9 16 41 47 65 81
preferentialAttachment 100k/500k 100k/500k 182 978 2574 137 175 243

Average CPU time 3763 8825 12215 4777 6184 9327

Table 1: CPU Time (easy dimacs10 instances)

The first two columns of tables 1, 2, 3 and 5 give the size of the graph (number
of vertices/edges) before and after scale reduction. In all these tables, bold font
is used to highlight the (strictly) best outcomes. In tables 1 and 2 we report the
CPU time in milliseconds for the “easy” instances of the dimacs10 and snap

sets, respectively. We say that an instance is easy when both I-Dsatur and
FastColor solved to optimality. We give the minimum, maximum and average
CPU time – parsing excluded – across the 20 random runs on the same instance.

Tables 3 and 5 show the lower (χlow) and upper bounds (χup) found by
I-Dsatur and FastColor on the rest of the dataset (“hard” instances). Both
for the lower and upper bound, we give the best and average value across the
20 random runs on the same instance. We use an asterisk (∗) to denote that

7 Personnal communication with the authors.



FastColor LS+I-Dsatur

|V |/|E| (scaled)
CPU time (ms) CPU time (ms)

min avg max min avg max

as-skitter 1696k/11m 4567/328k 10151 11600 13087 25810 39951 75655
ca-AstroPh 19k/198k 57/1596 13 30 56 21 27 36
ca-CondMat 23k/93k 26/325 9 16 21 8 19 27
ca-GrQc 5246/14k 44/946 1 3 11 0 2 3
ca-HepPh 12k/118k 239/28k 39 44 78 6 13 16
ca-HepTh 9880/26k 32/496 1 4 6 2 5 6
athletes edges 14k/87k 42/793 7 13 20 11 17 22
com-amazon.ungraph 335k/926k 497/1683 152 248 486 413 529 625
com-dblp.ungraph 317k/1050k 114/6441 130 245 453 358 453 588
com-lj.ungraph 3925k/34m 383/73k 23748 45137 62572 15545 22862 28152
company edges 14k/52k 65/842 4 9 20 4 9 15
government edges 7057/89k 1008/30k 5 24 53 39 63 81
new sites edges 28k/206k 36/615 17 41 115 32 38 46
politician edges 5908/42k 545/11k 26 47 74 4546 5218 5961
public figure edges 12k/67k 586/17k 12 48 75 40 52 64
tvshow edges 3892/17k 61/1820 1 2 6 1 2 3
wiki-topcats 1788k/25m 114k/5459k 20797 42787 66729 84592 100965 118302
loc-gowalla edges 197k/950k 3768/130k 206 492 1007 459 558 652
loc-gowalla totalCheckins 5669k/6442k 5669k/6442k 4895 5982 7736 6793 8195 10213
Amazon0302 262k/900k 286/950 154 301 444 269 445 598
Amazon0312 401k/2350k 27k/179k 409 556 771 802 1011 1348
Amazon0505 410k/2439k 33k/219k 495 586 725 815 999 1237
Amazon0601 403k/2443k 33k/221k 445 580 922 816 1053 1392
roadNet-CA 1965k/2767k 4568/7572 459 721 1314 2020 2314 3054
roadNet-PA 1088k/1542k 952/1547 258 473 1263 1079 1279 1629
roadNet-TX 1380k/1922k 1579/2637 308 451 1198 1378 1634 2103
soc-sign-epinions 132k/711k 253/22k 365 1068 1605 280 332 391
HU edges 48k/223k 72/612 25 110 183 50 62 83
RO edges 42k/126k 1638/7982 16 44 68 32 39 51
soc-LiveJournal1 4847k/43m 474/106k 60025 98270 113546 23413 29647 38846
soc-pokec-relationships 1633k/22m 288k/9034k 9041 43465 116745 20340 26412 32036
twitter combined 81k/1342k 719/49k 1181 1653 2192 337 384 415
web-BerkStan 685k/6649k 392/41k 4849 5103 6633 906 1068 1291
web-Google 876k/4322k 103/2513 860 1373 1961 1287 1752 2259
web-NotreDame 326k/1090k 1367/108k 126 154 241 316 354 434
web-Stanford 282k/1993k 1370/79k 885 1317 1526 505 578 667
wiki-RfA 38k/94k 38k/94k 47 51 53 75 102 124

Average CPU time 3788 7109 10919 5227 6715 8876

Table 2: CPU Time (easy snap instances)

the maximum lower bound found over the 20 runs is as high as the minimum
upper bound, signifying that the method is able close the instance. Moreover,
for the results of I-Dsatur, we denote via a superscript in which phase of the
approach the best outcome was found. A value of 0 stands for the computation
of the degeneracy ordering, 1 for the preprocessing phase, 2 for the local search
and 3 for the iterated Dsatur phase.

Finally, tables 4 and 6 give a summary view for hard instances, of respec-
tively the dimacs10 and snap datasets, with the arithmetic and geometric mean
bounds; overall ratio of optimality; and overall mean CPU time.

We first observe that for many of these graphs (see tables 1 and 2) finding
an optimal coloring is easy. One reason is that their clique and chromatic num-



FastColor LS+I-Dsatur

|V |/|E| (scaled)
χlow χup χlow χup

max avg min avg max avg min avg

kron g500-logn16 55k/2456k 6885/1495k 136 136.00 151 152.45 1136 136.00 3145 153.40
333SP 3713k/11m 3713k/11m 4 4.00 5 5.00 14 4.00 05 5.00
G n pin pout 100k/501k 100k/501k 4 4.00 6 6.00 34 4.00 25 5.00
audikw1 944k/38m 938k/38m 36 36.00 40 40.85 136 36.00 239 39.05
cage15 5155k/47m 5135k/47m 6 6.00 12 12.00 16 6.00 211 11.05
ldoor 952k/23m 952k/23m 21 21.00 32 32.70 323 21.65 228 29.85
smallworld 100k/500k 100k/500k 6 6.00 7 7.00 1∗6 6.00 26 6.00
wave 156k/1059k 156k/1059k 6 6.00 8 8.00 16 6.00 18 8.00

Table 3: Lower and Upper Bounds (hard dimacs10 instances)

method
χlow χup Opt. CPU

avg avg (G) avg avg (G) avg avg

LS+I-Dsatur 27.456 11.762 32.169 14.853 0.125 658034
FastColor 27.375 11.717 33.000 15.910 0.000 324928

Table 4: Summary (hard dimacs10 instances)

bers are equal. However, this is also the case for some graphs classified here as
“hard”. Whereas we use a complete maximum clique algorithm in our approach,
FastColor does not and yet it finds a maximum clique in all the “easy” graphs
and in most of the “hard” ones. Moreover, both solvers were able to quickly find
a maximum clique and an optimal coloring. In particular, we can see that many
easy graphs are solved during the preprocessing phase, the maximum (χlow−1)-
core being very small. Those graphs are therefore trivial both for FastColor and
for our approach, which are in fact similar on those. There is a slight advantage
to our method in terms of average run time, both for easy dimacs10 and easy
snap instances, which can presumably be attributed to our peeling method being
more efficient than the independent set extraction in FastColor.

Of the hard dimacs10 instances in table 3, all but kron g500-logn16 are
quasi-regular, i.e., every vertex has roughly the same degree. These graphs do
not have small cores, hence the peeling phase is irrelevant. We can see that on
these graphs, the tabu search algorithm significantly outperforms Dsatur and
therefore our approach dominates FastColor for the upper bound. For instance,
on ldoor, LS+I-Dsatur finds a 29.85-coloring on average whereas the best col-
oring found by FastColor has 32 colors. On the instance kron g500-logn16,
the tabu search performs poorly and is on average dominated by FastColor. In
one run, however, the iterated Dsatur algorithm is able to find a much better
coloring using 6 fewer colors than the best one found by FastColor. The aggre-



FastColor LS+I-Dsatur

|V |/|E| (scaled)
χlow χup χlow χup

max avg min avg max avg min avg

cit-HepPh 35k/421k 10k/215k ∗19 19.00 19 19.00 1∗19 19.00 319 19.10
cit-HepTh 28k/352k 7278/198k ∗23 23.00 23 23.65 323 22.15 324 24.05
artist edges 51k/819k 19k/606k 18 18.00 19 19.95 118 18.00 320 20.00
com-orkut.ungraph 3072k/117m 784k/59m 50 49.45 74 77.25 151 51.00 371 72.90
com-youtube.ungraph 1135k/2988k 30k/749k 17 17.00 23 23.00 319 17.95 323 23.25
email-Eu-core 986/16k 552/13k 18 18.00 19 19.00 3∗19 19.00 319 19.15
email-Enron 37k/184k 2873/79k 20 20.00 23 23.45 320 19.30 124 24.00
email-EuAll 265k/364k 1691/42k 16 16.00 18 18.00 3∗18 17.70 318 18.40
p2p-Gnutella04 11k/40k 8379/37k 4 4.00 5 5.00 34 4.00 15 5.00
p2p-Gnutella05 8850/32k 5755/28k 4 4.00 5 5.00 14 4.00 15 5.00
p2p-Gnutella06 8717/32k 6727/30k 4 4.00 5 5.00 34 4.00 15 5.00
p2p-Gnutella08 6301/21k 3051/15k 5 5.00 6 6.00 3∗6 6.00 26 6.00
p2p-Gnutella09 8114/26k 4448/21k 5 5.00 6 6.00 3∗6 6.00 16 6.00
p2p-Gnutella24 27k/65k 16k/54k 4 4.00 5 5.00 34 3.70 15 5.00
p2p-Gnutella25 23k/55k 9764/38k 4 4.00 5 5.00 14 4.00 15 5.00
p2p-Gnutella30 37k/88k 15k/61k 4 4.00 5 5.00 14 4.00 15 5.00
p2p-Gnutella31 63k/148k 24k/100k 4 4.00 5 5.00 14 4.00 15 5.00
soc-sign-Slashdot081106 77k/469k 5042/171k 26 26.00 29 29.00 3∗29 28.90 329 29.05
soc-sign-Slashdot090216 82k/498k 4960/171k 27 27.00 29 29.00 3∗29 29.00 329 29.05
soc-sign-Slashdot090221 82k/500k 4984/173k 27 27.00 29 29.00 3∗29 28.90 329 29.20
soc-sign-bitcoinalpha 3783/14k 472/5991 10 10.00 12 12.00 3∗12 12.00 112 12.00
soc-sign-bitcoinotc 5881/21k 564/8017 11 11.00 12 12.00 3∗12 12.00 312 12.00
HR edges 55k/498k 23k/329k 12 12.00 13 13.00 112 12.00 213 13.00
Wiki-Vote 7115/101k 2316/84k 17 17.00 22 22.00 319 18.70 322 22.20
facebook combined 4039/88k 487/30k 69 69.00 70 70.00 3∗70 70.00 370 70.10
gplus combined 108k/12m 13k/6838k 325 324.10 327 327.75 3∗326 324.60 3326 327.65
soc-Epinions1 76k/406k 5004/210k 23 23.00 28 28.00 326 24.25 129 29.00
CollegeMsg 1899/14k 1011/12k 7 7.00 9 9.00 3∗9 8.40 19 9.00
sx-askubuntu 157k/456k 1964/62k 23 23.00 25 25.00 3∗24 24.00 324 24.95
sx-mathoverflow 25k/188k 1638/81k 30 30.00 35 35.95 332 31.95 336 36.20
sx-stackoverflow 2584k/28m 114k/11m 55 55.00 66 66.15 155 55.00 167 67.00
sx-superuser 192k/715k 3041/123k 29 29.00 30 30.00 3∗30 30.00 330 30.00
wiki-talk-temporal 1094k/2788k 12k/656k 25 25.00 46 46.00 326 25.20 346 46.20
wiki-Talk 2394k/4660k 16k/794k 26 26.00 48 48.25 329 28.50 348 48.90
wiki-Vote 7120/101k 2316/84k 17 17.00 22 22.00 319 18.95 322 22.00

Table 5: Lower and Upper Bounds (hard snap instances)

method
χlow χup Opt. CPU

avg avg (G) avg avg (G) avg avg

LS+I-Dsatur 28.747 16.036 32.153 18.452 0.334 279715
FastColor 27.901 15.299 32.126 18.388 0.039 194104

Table 6: Summary (hard snap instances)

gated results given in table 4 show that LS+I-Dsatur outperforms FastColor

both for the lower and upper bounds on this dataset.



The iterated Dsatur algorithm is also able to improve the lower bound of 2
instances out of 8 (ldoor and G n pin pout). However, for the latter, FastColor
produces the same lower bound (4) which is larger than the maximum clique
found by dOmega. We do not know how to explain this.

On hard instances of the snap dataset (table 5), the picture is very different
with in particular the tabu search being almost useless. The best coloring found
by our method was obtained during the local search phase only once, for the
instance HR edges. In all other cases the best coloring was produced either during
preprocessing via Dsatur, or during the iterated Dsatur phase. Overall, as
shown in table 6, this is slightly less efficient for the upper bound than FastColor

which repreatedly uses Dsatur and eventually finds better colorings in several
instances whilst LS+I-Dsatur is best only on four instances.

The iterated Dsatur phase, however, is very effective with respect to the
lower bound. It improves on the maximum clique found by dOmega in 26 out of
35 instances, and it matches the best upper bound for 14 instances. Here again,
we observe on three instances (cit-HepTh, email-Enron and p2p-Gnutella24)
that FastColor outputs a lower bound greater than that found by dOmega.
Overall, our approach can close 15 of the hard instances whereas FastColor can
only close two of them. For 11 of these instances8, the optimal coloring was not
known prior to this study, as far as we know.

7 Conclusions

We have presented a new algorithm for exactly computing the chromatic number
of large real world graphs. This scheme combines a novel local search component
that performs well on massive graphs and gives improved upper bounds as well as
an iterative reduction method that produces much smaller graphs than previous
state of the art scale reduction methods. This scheme involves extracting more
information than simply a coloring from the Dsatur greedy coloring heuristic
and iteratively solving reduced instances with a complete, branch-and-bound
solver, in such a way that lower bounds produced for the reduced graphs are also
lower bounds of the original graph. Combined with the fact that we achieve more
significant reduction than the current state of the art means that we can find non-
trivial lower bounds even when peeling-based reduction cannot reduce the graph
to fewer than hundreds of thousands of vertices. Indeed, in our experimental
evaluation on a set of massive graphs, this method is able to produce both
better lower and upper bounds than existing solvers and proves optimality on
several (almost 75%) of them.

We expect that finding a method to extract cores from other heuristics, such
as our local search procedure will further improve performance.

8 email-Eu-core, email-EuAll, Gnutella08/09, bitcoinalpha, bitcoinotc,
facebook, gplus, CollegeMsg, sx-askubuntu and sx-superuser
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