
An Analysis of Core-guided Maximum Satisfiability1

Solvers Using Linear Programming2

George Katsirelos #3

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France4

Abstract5

Many current complete MaxSAT algorithms fall into two categories: core-guided or implicit6

hitting set. The two kinds of algorithms seem to have complementary strengths in practice, so that7

each kind of solver is better able to handle different families of instances. This suggests that a hybrid8

might match and outperform either, but the techniques used seem incompatible. In this paper, we9

focus on PMRES and OLL, two core-guided algorithms based on max resolution and soft cardinality10

constraints, respectively. We show that these algorithms implicitly discover cores of the original11

formula, as has been previously shown for PM1. Moreover, we show that in some cases, including12

unweighted instances, they compute the optimum hitting set of these cores at each iteration. We also13

give compact integer linear programs for each which encode this hitting set problem. Importantly,14

their continuous relaxation has an optimum that matches the bound computed by the respective15

algorithms. This goes some way towards resolving the incompatibility of implicit hitting set and16

core-guided algorithms, since solvers based on the implicit hitting set algorithm typically solve the17

problem by encoding it as a linear program.18

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics19

of computing → Combinatorial optimization; Theory of computation → Logic; Mathematics of20

computing → Solvers21

Keywords and phrases maximum satisfiability, core-guided solvers, minimum hitting set problem,22

linear programming23

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.1124

Funding This work has been partly funded by the “Agence nationale de la Recherche” (ANR-19-25

PIA3-0004 ANITI-DIL chair of Thomas Schiex).26

George Katsirelos:27

1 Introduction28

MaxSAT is the optimization version of SAT, in which we are given a set of hard clauses which29

must always be satisfied, as well as a set of weighted soft clauses, with the objective to find30

an assignment which minimizes the weight of the falsified soft clauses. Much like the case for31

SAT, the performance of MaxSAT solvers has been steadily improving over the past few years32

[5]. Two classes of algorithms have contributed significantly to this improvement: implicit33

hitting set (IHS) solvers [12, 14, 13, 6, 8] and core-guided solvers [18, 2, 24, 23, 22, 19]. Both34

are based on iteratively calling a SAT solver on formulas derived from the original MaxSAT35

instance and extracting unsatisfiable cores, but they are very different in their operation.36

IHS solvers exploit the hitting set duality of cores and correction sets (solutions)[26], and37

they try to build up a collection of cores that are enough to make the minimum hitting38

set match the optimum solution. Crucially, IHS solvers only ask the SAT solver to extract39

cores from subsets of the initial MaxSAT instance, which are all approximately equally hard.40

Core-guided solvers, on the other hand, reformulate the input instance with each core they41

discover so that it exhibits a higher lower bound. The reformulation generates ever more42

constrained formulas, which get harder and harder.43

Despite their different approaches, both classes of algorithms are competitive, but they44

© George Katsirelos;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Analysis of Core-guided MaxSAT Using Linear Programming

perform well in different families of instances. Hence, it would be desirable to understand45

exactly how they relate to each other and build algorithms with the strength of both. In46

that direction, Bacchus and Narodytska [7] showed that the cores discovered by the PM147

[18] algorithm correspond to a collection of cores of the original instance. Later, Narodytska48

and Bjørner [25] showed that for unweighted instances, PM1 actually discovers a hitting49

set of these cores of the original formula at every iteration. These results showed that there50

exists a close relationship between IHS and core-guided solvers.51

Here, we focus on PMRES [24] and OLL [22]. Our contributions are as follows.52

We show that, like PM1, each core computed by PMRES and OLL corresponds to a set53

of cores of the original MaxSAT instance.54

We identify a condition for when the lower bound computed by PMRES or OLL matches55

the optimum hitting set of the set of cores of the original formula. This includes the case56

when the input instance is unweighted.57

We show that the hitting set problem over these cores can be formulated compactly as58

an integer linear program for both PMRES and OLL. Moreover, the linear relaxation of59

that ILP has a lower bound which is at least as great as the bound computed by PMRES60

or OLL, respectively.61

The linear program that we give is actually a subset of a higher level relaxation of that62

hitting set problem in the Sherali-Adams hierarchy [28].63

The first two contributions match what has been done for PM1 previously, although64

our proofs are notably simpler, owing to the fact that the cores of PMRES and OLL have65

a much more regular structure than those of PM1. The latter two contributions provide66

further insight into the relationship between these core-guided algorithms and IHS. The LP67

formulation points the way to an algorithm that combines features of both core-guided and68

implicit hitting set solvers, since IHS solvers typically solve the hitting set problem with an69

ILP solver: any bounds computed by PMRES or OLL can be imported into IHS by way of70

this LP. The fact that this LP is a subset of a high level Sherali-Adams relaxation also shows71

IHS and core-guided solvers as being two extreme instantiations of the same algorithmic72

framework, where both solvers try to solve an implicit hitting set problem. But whereas IHS73

discovers only cores of the original formula and offloads solving of the hitting set problem to74

an external solver, PMRES very aggressively searches for a non-obvious set of new variables75

to add to the linear relaxation of the hitting set problem, in order to keep it as close as76

possible to the optimum integer solution, but places a great burden on the SAT solver. This77

suggests a more effective tradeoff could be found.78

2 Background79

In addition to the basics of MaxSAT, we also introduce necessary background on linear80

programming and weighted constraint satisfaction problems (WCSPs).81

2.1 Satisfiability82

A SAT formula ϕ in conjunctive normal form (CNF) is a conjunction of clauses and a clause83

is a disjunction of literals. We also view a CNF formula as a set of clauses and a clause as84

a set of literals. For a CNF formula F , we write vars(F) for the set of all variables whose85

literals appear in the clauses of F . The Weighted Partial MaxSAT (WPMS) problem is a86

generalization of SAT to optimization. A WPMS formula is a triple W = ⟨H,S,w⟩ where H87

is a set of hard clauses, S is a set of soft clauses and w : S → R≥0 is a cost function over the88

George Katsirelos 11:3

soft clauses. We also write H(W) = H,S(W) = S, vars(W) = vars(H) ∪ vars(S). For an89

assignment I over vars(W), we overload notation to write w(I) ≜
∑

c∈S:I⊢¬c w(c) for the90

cost of the soft clauses that I falsifies. The objective is to find an assignment I to vars(W)91

such that all clauses in H are satisfied and the cost of the falsified soft clauses, i.e., w(I), is92

minimized. We write opt(W) ≜ minIw(I) for this value. A WPMS formula ⟨H,S,w⟩ with93

w(c) = 1 for all c ∈ S, is a partial MaxSAT formula. If, additionally, H is empty, it is a94

MaxSAT formula.95

Two WPMS formula W = {H,S,w} and W ′ = {H ′, S′, w′} are equivalent if for each96

assignment I to vars(W) that satisfies H, we can extend it to an assignment I ′ to vars(W ′)97

that satisfies H ′ and w(I) = w′(I ′) + b, for some constant b that is the same for all98

assignments. For example, W = {∅, {(x), (x)}, w}, where w((x)) = 5, w((x)) = 3 is equivalent99

to W ′ = {∅, {(x)}, w′}, where w′((x)) = 2, because the weight of all assignments differs by 3100

in W,W ′. This notion of equivalence is important in our subsequent analysis.101

Given an unsatisfiable CNF formula F , a set C ⊂ F is a core of F if C is unsatisfiable.102

If C is minimal by set inclusion, it is a MUS (minimal unsatisfiable subset) of F . Given a103

WPMS formula W = ⟨H,S,w⟩, a set C ⊆ S is a core of W if H ∪ C is unsatisfiable. In the104

rest of this paper, we assume for simplicity that H is satisfiable and H ∪ S is unsatisfiable.105

In the sequel, we make some assumptions without loss of generality. First, we assume that106

all soft clauses in a MaxSAT formula W = ⟨H,S,w⟩ are unit. If there exists a clause ci ∈ S107

which is not unit, we create the formula W ′ = ⟨H ′, S′, w′⟩ with H ′ = H ∪ cnf(¬ci ⇐⇒ bi),108

S′ = S ∪ {(bi)} \ {ci}, where bi is a fresh variable, called the blocking variable for ci, and109

w′((bi)) = w(ci), w′(c) = w(c) for all c ∈ S ∩S′. We see that W is equivalent to W by noting110

that we can extend any assignment of W to W ′ by setting bi so that it satisfies bi ⇐⇒ ¬ci.111

Moreover, we assume that the unique literal in all soft clauses appears with negative polarity.112

If this does not hold, we can make it so by renaming. Because of this assumption, we identify113

each soft clause with the unique variable it contains and we use that literal to refer to it.114

Finally, we assume that there exist no soft clauses with cost 0, as we can remove those115

without affecting satisfiability or cost. However, we use the convention that w(x) = 0 for116

all positive literals and all negative literals of variables that do not appear in a soft clause.117

Given this convention, a WPMS instance can be written as W = ⟨H,w⟩, and S is implicitly118

S = {(xi | w(xi) > 0}. We use the two formulations interchangeably.119

2.1.1 Solving WPMS120

Most current SAT solvers have the ability to not only report SAT or UNSAT for a given121

formula, but also, given a partition of its clauses so that ϕ = ψ ∪χ, report a subset of χ such122

that ψ ∪ χ is unsatisfiable. In terms of WPMS, it means a modern SAT solver can give a123

subset of S such that H ∪ S is unsatisfiable, i.e., a core of the WPMS formula. Because we124

have assumed that S contains negative unit clauses only, it follows that each core of W is a125

positive clause entailed by H.126

The implicit hitting set (IHS) algorithm for WPMS [12, 14, 13, 6, 8] is based on the127

observation that the set of soft clauses CS ⊆ S violated by a solution I is a hitting set of128

the set of all cores of W [26]. Hence, an optimal solution is a minimum hitting set of the129

cores of W . Hitting sets of all cores are called correction sets.130

The IHS algorithm maintains an initially empty set of discovered cores C of W and a131

minimum hitting set of C, hs(C). If the SAT formula H ∪ (S \ hs(C)) is satisfiable, then132

its solutions are optimal solutions of W and w(hs(C)) = w(W). Otherwise, a new core is133

extracted and added to C and the loop repeats. Actual implementations of the IHS algorithm134

in MaxHS [12] and LMHS [27, 9] contain many optimizations over this basic loop.135

SAT 2023

11:4 Analysis of Core-guided MaxSAT Using Linear Programming

A core-guided algorithm for WPMS [18, 24, 23, 22, 19] is an iterative algorithm that136

generates a sequence of WPMS instances W 0 =
〈
H0, w0〉

= W, . . . ,Wm = ⟨Hm, wm⟩ and a137

sequence of lower bounds lb0 = 0 < lb1 < . . . < lbm such that Hi |= Hi−1 for all i ∈ [1,m]138

and W 0 is equivalent to W i for all i ∈ [1,m] and the weights of the assignments differ by lbi,139

therefore opt(W) = lbi + opt(W i). Moreover, in the last iteration it holds opt(Wm) = 0, so140

opt(W) = lbm. In words, a core-guided algorithm generates a sequence of equivalent WPMS141

instances such that each successive instance is used to derive an increased lower bound142

for the original instance, while decreasing the cost of every solution by the same amount.143

The final instance admits a solution with zero weight, and each such solution of Wm is an144

optimal solution of W . All such solutions are solutions of the SAT formula Hm |0, defined as145

Hm ∪ (x) | w(x) > 0, i.e., with all soft clauses made into hard clauses. In order to derive each146

successive instance W i+1 in the sequence, it extracts a core from W i and uses it to transform147

it into W i+1 and increase the lower bound, hence the name core-guided. The algorithms148

we study here, PMRES and OLL, are core-guided algorithms. Following Narodytska and149

Bjørner [25], we call cores of W i for i > 0 meta cores, or metas, to distinguish them from150

cores of the original formula W 0. We write mi for the meta discovered at iteration i.151

2.2 Linear programming and Weighted Constraint Satisfaction152

An integer linear program (ILP) IP has the form min cTx : Ax ≥ b ∧ x ∈ Z≥0, where x153

is a vector of n variables, c ∈ Rn, A ∈ Rm×n, b ∈ Rm. For a given x, if Ax ≥ b, then it154

is a feasible solution of IP. We write c(x) = cTx for the cost1 of x. We write c(IP) for155

the cost of a feasible solution with minimum cost. The linear relaxation P of IP is the156

problem min cTx : Ax ≥ b ∧ x ∈ Rn
≥0, i.e., one where we relax the integrality constraint157

x ∈ Zn
≥0. This is called a linear program (LP). Linear programs have the strong duality158

property, namely that for every linear program P in the above form, there exists another159

linear program PD = max bT y : AT y ≤ c ∧ y ∈ Rm
≥0, with the property that cP D (ŷ) ≤ cP (x̂)160

for every feasible solution x̂ of P and ŷ of PD and cP D (y∗) = cP (x∗) for optimal solutions x∗
161

and y∗. Given a feasible dual solution ŷ, the value AT
i y − ci, the slack of the dual constraint162

corresponding to the primal variable xi, is called the reduced cost of xi, denoted rci(ŷ). A163

necessary condition for optimality called complementary slackness links the two solutions:164

x∗
i rci(y∗) = 0, i.e., for each variable xi, either it is zero or its corresponding dual constraint165

(Aiy ≤ ci) is tight (has zero slack).166

A Boolean Cost Function Network (CFN) is a pair ⟨V,D,C⟩, where V is a set of variables,167

D is a function mapping variables to domains, and C is a set of cost functions. If the domain168

of a variable v is binary, we write v for the value v = 1 and v for v = 0. Each cost function169

is a pair ⟨S, c⟩ where S ⊆ V is its scope and cS is a function
∏

x∈S D(x) → R≥0 ∪ ∞. We170

assume there exists at most one cost function for each scope, so cS is a shortcut for ⟨S, cS⟩.171

An assignment IS to a scope S is a function which maps every variable x ∈ S to a value172

in D(x). When we omit S, it means S = V . When convenient, we also use I to denote173

the set {v = a | I(v) = a, v ∈ V } ∪ {v ̸= b | I(v) ̸= b, v ∈ V, b ∈ D(x)}. For a scope S and174

assignment I, I↓S is the projection of I to S. t(S) denotes all possible assignments to S.175

We use the convention that for a cost function cS , cS(I) = cS(I↓S), i.e., we implicitly176

project to S. For a CFN P , we write cP (I) =
∑

cS∈F cS(I). The Weighted Constraint177

Satisfaction Problem (WCSP) is to find an assignment I such that cP (I) < ∞ and that178

1 We stick to the terminology of weights in MaxSAT and costs in ILP and WCSP, even though they serve
the same purpose.

George Katsirelos 11:5

minimizes cP . The term WCSP is often used to refer both to the underlying CFN and to179

the optimization problem, and we do the same here. Additionally, we assume the existence180

of a unary cost function c{v} (abbreviated as cv) for every variable v ∈ V and a nullary cost181

function c∅, which is a lower bound for cP , becayse all costs are non-negative. A CSP is a182

WCSP in which the domain of all cost functions is {0,∞}.183

A WCSP P = ⟨V,C⟩ can be formulated as the following ILP:184

min
∑

cS∈C,l∈t(S)

cS(l)xSl (1)185

s.t. (2)186

x{v},a =
∑

l∈t(S):v=a∈l

xSl ∀v ∈ V, a ∈ D(v), cS ∈ C (3)187

∑
a∈D(v)

x{v},a = 1 ∀v ∈ V (4)188

xSl ∈ Z≥0 ∀v ∈ V, cS ∈ C, l ∈ t(S) (5)189

The linear relaxation of (1)– (5) defines the local polytope of P . A dual feasible solution190

of the local polytope LP has a particular interpretation: it defines a reformulation of the191

WCSP. A reformulation can be seen as a set of operations on a WCSP P that create a192

new WCSP P̂ with modified costs, but cP (I) = cP̂ (I) for all I. Therefore, a reformulation193

is said to preserve equivalence. This notion of equivalence is identical to the equivalence194

preserved by core-guided algorithms, with the primary difference being that the lower bound195

is explicitly represented in a WCSP in c∅. These operations can intuitively be thought of as196

moving cost among cost functions:197

Extention: ext(v = a, cS , α), with v ∈ S, a ∈ D(v). This subtracts cost α from c({v}, a)198

and adds it to c(S, l) for all tuples l ∈ t(S) : (v = a) ∈ l. To see the correctness of this,199

consider the subset of the objective function cv(a)x{v},a +
∑

l∈t(S):(v=a)∈l cS(l)xSl, as200

well as constraint (3). Since x{v},a is equal to the sum, the value of the objective remains201

unchanged by adding α to one and subtracting it from the other.202

Projection: prj(cS , v = a, α), with v ∈ S, a ∈ D(v). This is the same as ext(v, cS ,−α).203

Nullary projection: prj0(cS , w). This subtracts cost α from each tuple l ∈ t(S) and moves204

it to c∅. This is justified because
∑

l∈t(S) xSl = 1 and the cost of c∅ is a constant in the205

objective function.206

Because these operations preserve equivalence, they are called Equivalence Preserving207

Transformations (EPTs). A valid set of EPTs ensures that all cost functions are non-negative208

everywhere, but there are valid sets of EPTs for which any sequence of performing them209

leaves intermediate negative costs. A valid set of EPTs can be mapped to a feasible dual210

solution of the local polytope LP and vice versa. A set of EPTs which achieves the greatest211

increase in c∅, and hence the lower bound, can be mapped to an optimal dual solution of212

the local polytope LP [11]. Given a dual solution, the cost of each tuple l ∈ t(S) is given by213

the reduced cost of the variable xSl.214

For a WCSP P , let Bool(P) be the CSP (not weighted) defined by accepting exactly215

those tuples which have cost 0, i.e., changing all costs which are greater than 0 to ∞. Let216

P̂ be a reformulation of P . A consequence of complementary slackness is that if P̂ is an217

optimal reformulation, then Bool(P̂) has a non-empty arc consistency closure [11, 15], in218

which case it is said that P̂ is virtually arc consistent (VAC). This is not a sufficient condition219

SAT 2023

11:6 Analysis of Core-guided MaxSAT Using Linear Programming

for optimality, however. Conversely, if P̂ is not VAC, therefore Bool(P̂) has an empty arc220

consistency closure, there exists a reformulation with a higher c∅.221

3 PMRES222

The PMRES algorithm is a core guided solver which was introduced by Narodytska and223

Bacchus [24] and is implemented primarily in the Eva solver. We describe it briefly here. In224

this description, we use the view of WPMS as hard and soft clauses, rather than hard clauses225

and an objective, because the transformations performed by PMRES temporarily violate226

the assumptions that allow us to take this alternative view. However, these assumptions are227

always restored at the end of each iteration.228

3.1 Max-Resolution229

Max resolution [20] is a complete inference rule for MaxSAT [10]. It consists of the following230

rule on soft clauses, in which the conclusions replace the premises:231

(A ∨ x,w)
(B ∨ x,w)
(A ∨B,w)

(A ∨ x ∨B,w)
(B ∨ x ∨A,w)

The first clause in the conclusions is equivalent to what resolution derives. The latter232

two are called compensation clauses, as they compensate for the cost of assignments which233

do not falsify the conclusion A ∨B but falsify one of the discarded premises. Depending on234

the exact form of A and B, the compensation “clauses” may not actually be in clausal form235

and would have to be converted to a set of clauses each. We ignore this complication here,236

as our presentation of PMRES mostly avoids this case.237

The rule is generalized to clauses with different costs w1 > w2 by cloning the heavier238

clause into clauses with costs w2 and w1 −w2. When one of the clauses is hard, e.g., w1 = ∞,239

we keep it in the conclusions.240

Max resolution has the property that if W and Ŵ are the formulas before and after241

application of the rule, then they are equivalent.242

3.2 Max-Resolution with cores243

PMRES uses the specialization of this rule for a binary clause and a unit clause, i.e.,244

|A| = 1, B = ∅.245

(A ∨ x,w)
(x,w)
(A,w)

(x ∨A,w)
As a core-guided solver, PMRES is an iterative algorithm and the first step in each246

iteration is to extract a meta core from W i, or terminate if Hi ∪ Si is satisfiable. Suppose247

that the meta is mi = {bi
1, b

i
2, . . . , b

i
ri} ⊆ Si−1 and wi

min = minbj∈C c
i(bi

j). This implies248

the presence of the soft clauses (bi

1, w1), . . . , (bi

ri , wri). PMRES first splits each soft clause249

(bi

j , w
′) with w′ > wi

min into (bi

j , w
i
min) and (bi

j , w
′ − wi

min). This temporarily violates our250

assumption that each soft clause contains a unique literal, but as we will see, this invariant251

George Katsirelos 11:7

(b1 ∨ b2 ∨ b3 ∨ b4)
(b5 ∨ b2)
(b5 ∨ b3 ∨ b4)

Figure 1 Cores of the instance used in the running example

is restored before the next iteration starts. In the next step, it adds to Hi+1 the hard clause252

corresponding to C using the CNF encoding of (bi
1 ∨ di

1), (di
1 ⇐⇒ bi

2 ∨ di
2), . . . (di

ri−2 ⇐⇒253

bi
ri−1 ∨ di

ri
1
), (di

ri−1 ⇐⇒ bi
r), where di

1, . . . , d
i
r−1 are fresh variables. It is clear that we can254

recover the clause (bi
1 ∨ . . . ∨ bi

r) by resolving (not with max-resolution, as the clauses are255

all hard) the first two clauses on di
1, then on di

2, and so on, therefore the encoding and the256

clause are equivalent. PMRES then applies max-resolution as follows:257

Premises Conclusions

(bi
1 ∨ d1, w

i
min) (bi

1, w
i
min) (d1, w

i
min), (bi

1 ∨ d1, w
i
min)

(d1, w
i
min) (d1 ∨ bi

2 ∨ d2, w
i
min) (bi

2 ∨ d2, w
i
min), ((bi

2 ∨ d2) ∨ d1, w
i
min)

...

(bi
r−1 ∨ dr−1, w

i
min) (bi

r−1, w
i
min) (dr−1, w

i
min), (bi

r−1 ∨ dr−1, w
i
min)

(dr−1, w
i
min) (dr−1 ∨ bi

r, w
i
min) (bi

r, w
i
min), (bi

r ∨ dr−1, w
i
min)

(bi
r, w

i
min) (bi

r, w
i
min) (□, wi

min)

258

The non-clausal constraints in light gray are tautologies and can be discarded. For259

example, by (di
1 ⇐⇒ bi

2 ∨ di
2), (bi

2 ∨ di
2) ∨ di

1 is equivalent to (di

1 ∨ di
1), a tautology. The260

clauses in gray are used as input for the next max-resolution step. The framed clauses are261

new soft clauses that are kept for the next iteration. Since they are not unary, they are262

reified using fresh variables and converted to unit soft clauses, e.g., f ⇐⇒ bi
1 ∧di

1 and (f, w),263

where f is the fresh variable. Finally, the empty soft clause (□, wmin) is used to increase the264

lower bound for the next iteration by wmin.265

Consider now a clause (bi

j , w
′) that was split into two clones (bi

j , wmin) and (bi

j , w
′ −wmin).266

The former is consumed by max-resolution, therefore the invariant that each soft clause267

contains a unique literal is restored. This also allows us to implement the cloning process as268

a simple update: wi+1(bj) = wi(bj) − wmin = w′ − wmin. If it happens that w′ = wmin, we269

maintain by the previously mentioned convention that wi+1(bj) = 0.270

In the following, we write Hi
R for the formula consisting only of the clauses introduced271

by PMRES, therefore Hi = H ∪Hi
R. We also write F i and Di for the set of all variables,272

introduced to reify soft clauses (e.g. f above) or to encode the meta core clause (the di
j273

variables above), respectively. It has also been previously noted [25, 3] that the conjunction274

of the definitions of the F and D and the clauses (bi
1 ∨ di

1) define a monotone circuit, with a275

binary gate corresponding to each v ∈ F i ∪ Di, an unnamed ∨ gate corresponding to the276

clause (bi
1 ∨ di

1), and an implicit ∧ gate whose inputs are the unnamed ∨ gates, which is the277

output of the circuit.278

▶ Example 1 (Running Example). Consider an instance W with 5 soft clauses with cost 1279

each and corresponding literals b1, . . . , b5, and the cores shown in Figure 1. We show a run280

of PMRES in Figure 2 (for readability, we show the objective function rather than the set of281

soft clauses) that discovers first the core (b1 ∨ b2 ∨ b3 ∨ b4). It increases the lower bound by282

1, adds the variables D1 = {d1
1, d

1
2, d

1
3} and F 1 = {f1

1 , f
1
2 , f

1
3 }, defined as shown in the row283

corresponding to iteration 1. Since weights are unit, all original variables except b5 disappear284

SAT 2023

11:8 Analysis of Core-guided MaxSAT Using Linear Programming

Iteration Meta New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3,

d1
3 ⇐⇒ b4,
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3 1 + b5 + f1
1 + f1

2 + f1
3

2 {f1
2 , b5} d2

1 ⇐⇒ b5
f2

1 ⇐⇒ b7 ∧ d2
1 2 + f1

1 + f1
3 + f2

1

Figure 2 PMRES on the running example

from the objective. In the next iteration, PMRES discovers the meta {b5, f
1
2 }, increases the285

lower bound to 2, and introduces the variables d2
1 and f2

1 . In the next iteration, the instance286

is satisfiable. One of the possible solutions is b4, b5, with cost 2, which matches the lower287

bound.288

3.3 Cores and Hitting Sets of PMRES289

We first observe that the f i and di variables created on iteration i are functionally dependent290

on the bi variables. Therefore, the formula Hi generated after the ith iteration is logically291

equivalent to H, i.e., every solution of H can be extended to exactly one solution of Hi.292

▶ Lemma 2. There exists a set Ci such that mi is a core of Hi if and only if for each c ∈ Ci,293

c is a core of ϕ.294

Proof. The set Ci can be derived from mi and Hi
R by forgetting the variables f and d295

that were introduced by PMRES. More concretely, let E0 = {mi}. If there exists c ∈ Ej
296

such that f ∈ c and f was introduced by PMRES and defined as f ⇐⇒ b ∧ d, we set297

Ej+1 = Ej \ {c} ∪ {c \ {f} ∪ {b}, c \ {f} ∪ {d}}, i.e., we replace c by two clauses which have b298

and d, respectively, instead of f . If there exists c ∈ Ej such that d ∈ c and d was introduced299

by PMRES and defined as d ⇐⇒ b ∨ d′, we set Ej+1 = Ej \ {c} ∪ {c \ {d} ∪ {b, d′}}, i.e.,300

we replace d by b, d′ in c. The process eventually terminates because it removes one reference301

to a variable introduced by PMRES and replaces it by a variable corresponding to a gate at302

a deeper level of the Boolean circuit defined by Hi
R, hence all variables must eventually be303

original variables of W 0. It is also confluent because the choice of variable to forget does not304

hinder other choices.305

Since both forgetting variables and introducing functionally defined variables are satisfiability-306

preserving operations, we have mi ∧Hi
R |= Ci and Ci |= mi ∧Hi

R. ◀307

▶ Lemma 3. Let hs ⊆ S. Then hs as an assignment can be extended to a solution of Hi
R if308

and only it is a hitting set of Ci
∪.309

Proof. This follows from lemma 2.310

(⇒) hs satisfies Hi
R, hence it satisfies all clauses in Ci, which are cores, so it hits all the311

cores.312

(⇐) hs is a hitting set of Ci, hence it satisfies all the corresponding clauses, hence it313

satisfies Hi
R. ◀314

In the following, let Ci
∪ = ∪j∈[1,i]Cj .315

▶ Observation 4.
〈
Hi

R, w
0〉

and
〈
Hi

R, w
i
〉

are equivalent.316

George Katsirelos 11:9

Proof. Consider H0 =
〈
Hi

R, w
0〉

. We know that m0 is a core of H0. By applying max317

resolution to m0 as described in section 3.2, we get new variables and soft clauses. But these318

new variables are defined identically to the variables PMRES introduced to get H1
R, which319

is a subset of Hi
R. Hence, we can identify them. By correctness of PMRES, we get that320 〈

Hi
R, w

1〉
is equivalent to

〈
Hi

R, w
0〉

. We apply the same argument inductively to complete321

the proof. ◀322

▶ Corollary 5. The WPMS Whs
i =

〈
Hi

R, w
i
〉

encodes the minimum hitting set problem over323

Ci
∪, with weights shifted by lbi. Hitting sets with cost lbi, if they exist, are solutions of W i

hs324

that use only soft clauses with soft 0.325

Proof. From Lemma 3,
〈
Hi

R, w
0〉

encodes minimum hitting set over Ci
∪. From Observation 4,326 〈

Hi
R, w

0〉
and

〈
Hi

R, w
i
〉

are equivalent, therefore Whs
i encodes minimum hitting set over Ci

∪.327

The second part follows from the fact that, for any assignment I, w0(I) = lbi + wi(I), so328

if w0(I) = lbi, then wi(I) = 0. ◀329

Let us denote by Hi
R |0 the formula Hi

R with all variables x such that w(x) > 0 set330

to false so that all models of Hi
R |0 are minimum hitting sets of Ci. Therefore if Hi

R |0 is331

satisfiable, the bound computed by PMRES matches the cost of the minimum hitting set of332

Ci
∪.333

▶ Lemma 6. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of PMRES.334

Proof. All variables in D have cost 0.335

Moreover, all variables which appear in any meta have cost 0, because it is moved away336

by max-resolution.337

Therefore, all variables in bj
1, . . . , b

j
rj for j ∈ [1, i] have zero cost.338

We construct a solution to Hi
R |0 by setting to false all variables which are inputs to339

false ∧-gates (which is done by unit propagation), then we set variables to true by traversing340

metas in reverse chronological order:341

1. For mi, we pick the first variable in bj
1, . . . , b

j
rj and set it to true. We set all variables in342

F i and Di to false (the former is required for mi because, as the last discovered core, all343

variables in F i have non-zero weight.344

2. Supposing we have satisfied all metas mj+1, . . . ,mi, consider mj . Suppose that 0 ≤345

q < |mj | variables in F j that have been set to true by previous steps, with indices346

P j = {p1, . . . , p
j
q}. For simplicity of notation, assume that if P j is empty, then pj

q = 0.347

Then we set to true the variables bj
r | r ∈ P j as well as bj

pq+1, and set the rest to false.348

When pj
q = 0, this reduces to setting the first variable in bj

1 to true.349

a. This assignment satisfies the constraints introduced in Hj
R.350

b. Moreover, all the variables that appear in mj have cost 0 after the jth iteration.351

Therefore they cannot appear in any meta discovered in iterations j + 1, . . . , i and352

the assignment we have chosen here does not contradict the assignments chosen in353

iterations j + 1, . . . , i.354

◀355

We can see where the proof of Lemma 6 breaks when applied to WPMS: the assertion 2b356

does not hold, because a variable whose cost has not been reduced to 0 may appear in later357

metas and our procedure may therefore create a conflicting assignment.358

SAT 2023

11:10 Analysis of Core-guided MaxSAT Using Linear Programming

Iteration Core New clauses Objective
1 {b1, b2, b3, b4} d1

1 ⇐⇒ b2 ∨ d1
2, d1

2 ⇐⇒ b3 ∨ d1
3, 1 + b2 + 2b3 + 3b4 + 5b5+

d1
3 ⇐⇒ b4, f1

1 + f1
2 + f1

3
f1

1 ⇐⇒ b1 ∧ d1
1, f1

2 ⇐⇒ b2 ∧ d1
2,

f1
3 ⇐⇒ b3 ∧ d1

3
2 {f1

2 , b5} d2
1 ⇐⇒ b5 2 + b2 + 2b3 + 3b4 + 4b5+
f2

1 ⇐⇒ f1
2 ∧ d2

1 f1
1 + f1

3 + f2
1

3 {b3, b4, b5} d3
1 ⇐⇒ b4 ∨ d3

2, d3
2 ⇐⇒ b5 4 + b2 + b4 + 2b5+

f3
1 ⇐⇒ b3 ∧ d3

1, f3
2 ⇐⇒ b4 ∧ d3

2 f1
1 + f1

3 + f2
1 + 2f3

1 + 2f3
2

4 {b2, b5} d4
1 ⇐⇒ b5 5 + b4 + b5+
f4

1 ⇐⇒ b2 ∧ d4
1 f1

1 + f1
3 + f2

1 + 2f3
1 + 2f3

2 + f4
1

Figure 3 PMRES on the running example with modified, non-unit weights.

▶ Example 7 (PMRES on a weighted formula). Consider the running example, but with the359

modified weights (1, 2, 3, 4, 5), respectively. We assume the same trail as shown in figure 2,360

and show in figure 3 the modified execution. After the first two iterations the lower bound will361

be 2, as shown. The optimum hitting set is {b2, b3} with cost 5, so the lower bound does not362

match the optimum. Indeed, H2
R |0 is unsatisfiable: the clause (f1

2 ∨ b5) can only be satisfied363

by f1
2 , because w2(b5) > 0. But f1

2 ⇐⇒ b2 ∧(b3 ∨b4) and w2(b2) > 0, w2(b3) > 0, w2(b4) > 0,364

therefore f1
2 is forced to false. Hence, PMRES has to perform more iterations before matching365

the bound of the hitting set. A possible trail finds the metas {b3, b4, b5} and {b2, b5} (which366

also happen to be cores of W 0), as shown.367

We are now ready to state the main result of this section.368

▶ Theorem 8. For a PMS instance, at each iteration, PMRES computes an optimum hitting369

set of Ci
∪.370

Proof. Follows from Lemma 2, Corollary 5, and Lemma 6. ◀371

For a WPMS instance, we can get a weaker result: since cores of Hi
R |0 are also cores of372

Hi |0, we can extract cores of Hi
R |0, which are metas of W until it becomes satisfiable, at373

which point the bound is a hitting set of Ci
∪. It is not clear if that is a desirable thing to do374

from a performance perspective.375

3.4 PMRES and Linear Programming376

In this section, we prove the following.377

▶ Theorem 9. There exists an integer linear program ILP i
P which (1) is logically equivalent378

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)379

whose linear relaxation has an optimum which matches that derived by PMRES.380

Given the results of section 3.3, (1) is easy to show, since we can generate the set Ci
∪,381

then write the hitting constraint for each set in Ci
∪, and use w0 as the objective. Call this382

ILP i
hs. But ILP i

hs may be exponentially larger than Hi
R. It is not much harder to show383

that we can achieve (1) and (2). As Corollary 5 shows, Hi
R is logically equivalent to that384

hitting set problem, so we can replace the constraints of ILP i
hs by Hi

R (i.e., by the standard385

encoding of clauses to linear constraints) and get an equivalent problem. Call that ILP i
R386

and its linear relaxation LP i
R.387

However, we can see that LP i
R is weak, specifically, that c(LP i

R) < c(ILP i
R).388

George Katsirelos 11:11

▶ Example 10 (Running example, continued). Consider the ILPs ILP 2
hs and ILP 2

R corres-389

ponding to the hitting set problems for the 2nd iteration of PMRES on the instance W in390

our running example. The optimum of both ILP 2
hs and ILP 2

R is 2, as expected, but the391

optimum of LP 2
R is only 1.5.392

In this specific example, since we have integer costs, the bound of the linear relaxation393

allows us to derive a bound of 2 for ILP 2
R, but in general we can get an arbitrarily large394

difference. This is not surprising in general, but the fact that PMRES does compute an395

optimal hitting set at each iteration suggests that we should be able to do better. This is396

the objective of this section.397

To construct an LP that meets the requirement of the theorem, we give a WCSP and398

its reformulation, which yield an LP (the local polytope) and a dual solution (one which is399

created from the formulation), as described in section 2.2. The result could be proved by400

directly giving an appropriate LP and dual solution, and proving the result on that, but it401

would be more cumbersome and would lack the existing intuitive understanding that has402

been developed in WCSP of dual solutions as reformulations.403

Proof of theorem 9. We will give first a WCSP P i which admits the same solutions as Hi
R404

and has unary costs such that its feasible solutions have the same cost as the hitting set405

problem entailed at iteration i of PMRES. This means that the optimum solution of P i
406

matches the minimum hitting set of Ci
∪. Further, we show that its linear relaxation LP (P i)407

admits a dual feasible solution whose cost matches the bound computed by PMRES. We408

give this dual solution as a sequence of equivalence preserving transformations of P i, using409

the results presented in section 2.2. That linear program, LP (P i), satisfies the requirements410

of the theorem.411

We first define P i. The high level idea is that the we encode the objective function of412

ILP i
R directly as unary costs, and each meta using the well known decomposition into ternary413

constraints. The d variables have exactly the same semantics as the auxiliary variables used414

in that decomposition. The corresponding f variable corresponds to a single tuple of these415

ternary constraints, so we add an f variable to each ternary constraint in order to capture416

the cost of that ternary tuple into a unary cost. More precisely, let P 0 = ∅. At iteration i,417

where the core discovered is {bi
1, b

i
2, . . . , b

i
r} ⊆ Si−1, P i is defined as P i−1 and additionally418

the following variables and cost functions:419

0/1 variables b1, . . . , bn, di
j , f i

k, corresponding to the propositional variables of the same420

name in W i.421

Unary cost functions with scope bi for each bi ∈ vars(W 0), with cbi
(0) = 0, cbi

(1) = c0(bi)422

A ternary cost function with scope {bi
1, d

i
1, f

i
1} where each tuple that satisfies bi

1 ∨ di
1 and423

f i
1 ⇐⇒ di

1 ∧ bi
1 has cost 0 and the rest have infinite cost.424

Quaternary cost functions with scope {bi
j , d

i
j−1, d

i
j , f

i
j}, for j ∈ [2, r− 2], where each tuple425

that satisfies di
j−1 ⇐⇒ di

j ∨ bi
j and f i

j ⇐⇒ di
j ∧ bi

j has cost 0 and the rest have infinite426

cost.427

A binary cost function with cost 0 for each tuple that satisfies di
r−1 = bi

r and infinite cost428

otherwise.429

It is straightforward to see that P i is equivalent to ILP i
R: (i) they have the same set of430

variables, (ii) the only costs in P i are in unary cost functions, so the objective functions are431

the same, (iii) the quaternary cost functions satisfy, by construction, the clauses included in432

the scope of these functions, and (iv) each clause is present in one cost function. Therefore,433

SAT 2023

11:12 Analysis of Core-guided MaxSAT Using Linear Programming

solutions of P i are hitting sets of Ci
∪ and the cost of each solution matches the cost of the434

corresponding hitting set.435

It remains only to show that the LP optimum of relax(P i) matches that produced by PM-436

RES. We show a slightly stronger result, namely that there exists a sequence of EPTs such that437

in P i, not only does the bound match that produced by PMRES, but the unary costs of each438

variable match the weights computed by PMRES. We show this by induction on the number439

of iterations. At iteration 0, this holds trivially, as the bound is 0 for both P 0 and PMRES440

and the unary costs match the weights by construction. Suppose it holds at iteration k − 1.441

Then, the core at iteration k is {bk
1 , b

k
2 , . . . , b

k
r } ⊆ Sk−1. The EPT ext(bk

1 , {bk
1 , d

k
1 , f

k
1 }, wk

min)442

enables the EPTs prj({bk
1 , d

k

1 , f
k
1 }, fk

1 , w
k
min) and prj({bk

1 , d
k
1 , f

k
1 }, dk

1 , w
k
min). For j ∈ [2, rk−2],443

in addition to extending cost from bk
j , we also extend from d

k

j−1, which has just received444

this amount of cost: ext(bk
j , {bk

j , d
k
j−1, d

k
j , f

k
j }, wk

min) and ext(dk

j−1, {bk
j , d

k

j−1, d
k
j , f

k
j }, wk

min),445

which enable prj({bk
j , d

k
j−1, d

k
j , f

k
j }, fk

j , w
k
min) and prj({bk

j , d
k
j−1, d

k
j , f

k
j }, dk

j , w
k
min). Finally,446

after j = r − 2, we are left with wk
min in dk

r−1. Using dk
r−1 ⇐⇒ bk

r , we move cost from bk
r to447

dk
r−1 (specifically: ext((, bk

r , {bk
r , d

k
r })wk

min, then prj({bk
r , d

k
r }, dk

r , w
k
min). Since both dk

r and448

d
k

r have cost wk
min, we can apply prj0(dk

r , w
k
min) to increase the lower bound by wk

min.449

After these EPTs, not only is the lower bound increased by wk
min, but the variables450

bk
1 , . . . , b

k
r have their cost decreased by wk

min, the variables fk
1 , . . . , f

k
r−1 receive cost wk

min,451

and the variables dk
1 , . . . , d

k
r−1 stay at 0. This matches the effects of PMRES, as required by452

the inductive hypothesis. ◀453

▶ Example 11. We move away from our running example here, as showing and explaining454

all the cost moves would be tedious and space consuming. Instead, we give a small example455

with the core {b1
1, b

1
2, b

1
3} in figure 4. All variables of this core have uniform weight w. We456

show how the EPTs remove cost from b1
1, b

1
2, b

1
3 and move it to f1

1 , f1
2 and c∅, leaving all457

other cost functions unchanged, even though they were used to make the cost moves possible.458

The increase in c∅ comes from a nullary projection from b1
3.459

Note that theorem 9 does not prove that the optimum of (P i) is identical to that of460

PMRES at iteration i, but only that it is at least as high, as the following example shows.461

▶ Example 12 (Running example, continued). After iteration 2, in the running example, unit462

propagation alone detects the core {b3, b4, b5}. This means that when we set these variables463

to false because their weight is non-zero, unit propagation generates the empty clause.464

Let P̂ i be the reformulation of P i given by theorem 9. Then Hi
R and P̂ i have the same465

costs/weights. Hi
R |0 is constructed from Hi

R in the same way as Bool(P i) is constructed466

from Bool(P): by making each non zero cost (weight) into an infinite cost (weight). so Hi
R |0467

admits the same solutions as Bool(P̂ i). Moreover, each clause of Hi
R |0 is contained in at468

least one constraint of P̂ i, therfore arc consistency on Bool(P̂ i) is at least as strong as unit469

propagation on Hi
R |0. And since the core {b3, b4, b5} is not satisfied, the arc consistency470

closure of Bool(P̂ i) is empty, therefore its bound can be improved further.471

On the other hand, there is no reason to expect that the the optimum of (P i) will472

necessarily be higher than the bound computed by PMRES. For example, if Hi
R |0 has no473

cores that can be detected by unit propagation, the argument of example 12 does not apply.474

4 OLL475

OLL [22] is probably the most relevant core-guided algorithm currently, since solvers based on476

it, like RC2 [19] and CASHWMaxSAT-CorePlus [21] have done very well in recent MaxSAT477

George Katsirelos 11:13

b1
1 d1

1 f1
1 0 1 2

0 1 0 0
1 0 0 0 w 0
1 1 1 0 w 0

b1
2 d1

1 d1
2 f1

2 0 3 4

0 0 0 0 0 w 0
0 1 1 0 0
1 1 0 0 0 w 0
1 1 1 1 0 w 0

b1
1 0 1

0 0
1 w 0

d1
1 0 2 3

0 0 w 0
1 0

f1
1 0 2

0 0
1 0 w

b1
2 0 3

0 0
1 w 0

b1
3 0 4 5

0 0 w 0
1 w w 0

f1
2 0 4

0 0
1 0 w

c∅ 0 5

0 w

Figure 4 The evolution of cost functions that leads to the increase of the lower bound by w for the
core {b1

1, b1
2, b1

3}. Each table shows a cost function and how it evolves after each EPT. We omit the rows
which would violate one of the clauses introduced by PMRES, as infinity absorbs all costs, so they are
unaffected by EPTs. The column 0 gives the initial costs. Subsequent columns give the state of each
cost function after all EPTs to that point. Only points in the sequence which affect a given cost func-
tion are given in the corresponding table. Since d1

2 = b1
3 for this core, we simplify the problem here and

replace occurrences of d1
2 by b1

3 rather than include an extra binary cost function to enforce their equal-
ity. The sequence is 1 : ext(b1

1, {b1
1, d1

1, f1
1 }, w), 2 : prj({b1

1, d1
1, f1

1 }, d
1
1, w) and prj({b1

1, d1
1, f1

1 }, f1
1 , w),

3 : ext(b1
2, {b1

, d1
1, b1

3, f1
1 }, w) and ext(d1

1, {b1
, d1

1, b1
3, f1

1 }, w), 4 : prj({b1
, d1

1, b1
3, f1

1 }, b
1
3, w) and

prj({b1
, d1

1, b1
3, f1

1 }, f1
2 , w), 5 : prj0(b1

3, w)

evaluations [5].478

4.1 MaxSAT with soft cardinality constraints479

OLL is an iterative algorithm, similar to PMRES. For the purposes of this discussion,480

it only differs in how it processes each meta that it finds. At iteration i, given the meta481

mi = {bi
1, b

i
2, . . . , b

i
ri} ⊆ Si−1, it adds fresh variables oi

1, . . . , o
i
ri−1 and constraints oj ⇐⇒482 ∑ri

k=1 b
i
k > j, then decreases the weight of each variable in mi by wi

min, increases the lower483

bound by wi
min, and sets the weight of the fresh variables oi

1, . . . , o
i
ri−1 to wi

min. The o484

variables are called sum variables.485

4.1.1 OLL with implied cores486

We use here a minor modification of OLL, which we denote OLL′. In this variant, before487

processing a meta at iteration i, each sum variable oj
k, j < i, k ∈ [2, rj − 1] is replaced by oj

k′488

where k′ < k is the lowest index for which w(oj
k′) > 0. This is sound because oj

k → oj
k′ for all489

k′ < k, which can be written as ¬oj
k ∨ ok′ . We can resolve the meta at iteration i with this490

clause to effectively replace oj
k by oj

k′ . This procedure can be repeated as long as it results in491

a meta with non-zero minimum weight, although that step is not required for the results we492

obtain next.493

We argue that OLL′ matches the behaviour of a realistic implementation like RC2, when494

used with an assumption-based solver such as Minisat [16] or a derivative like Glucose [4].495

In order to extract a core with Minisat, RC2 asserts the negation of all literals which may496

appear in a core as assumptions. These literals are passed to Minisat as a sequence. Minisat497

returns a subset of these literals as a core. Crucially, Minisat immediately propagates each498

assumption in sequence and never returns in a core a literal which is implied by earlier499

assumptions. Therefore, if the literals of the soft clauses introduced by OLL are given in the500

SAT 2023

11:14 Analysis of Core-guided MaxSAT Using Linear Programming

order
〈
oi

1, . . . o
i
ri

〉
, we get from oi

j+1 =⇒ oi
j , or equivalently oi

j =⇒ oi
j+1, that all literals oi

j501

are implied by unit propagation from oi
j′ with j′ < j. Therefore, Minisat will not return a502

core that contains oi
j if oi

j′ is in the assumptions. This means that OLL′ is identical to OLL503

given these implementation details. By inspection of the code of RC2, we can confirm that504

it does indeed use this order of assumptions with Minisat, and therefore implements OLL′.505

4.2 Cores and Hitting Sets of OLL506

In the following, we overload notation that we have used already for PMRES, but we use507

them now in the context of OLL′, with the same meaning: Hi
R, Ci, Ci

∪.508

▶ Lemma 13. There exists a set Ci such that mi is a core of Hi if and only if for each509

c ∈ Ci, c is a core of ϕ.510

Proof Sketch. We observe that oi
j =

∨
S⊆mi,|S|>j(∧b∈Sb), therefore it is a monotone function511

of the inputs of the core. The entire formula constructed by OLL is therefore also monotone.512

We show the result using a similar variable forgetting argument as we did in lemma 2. ◀513

The proofs of Lemma 3, Observation 4, and Corollary 5 transfer to OLL′ immediately.514

These establish that the WPMS instance
〈
Hi

R, cost
i
〉

encodes the minimum hitting set515

problem over Ci
∪, where the cores are derived as described in lemma 13 this time.516

In order to show that OLL′ does compute minimum hitting sets at each iteration for517

PMS, we have to prove the equivalent of lemma 6.518

▶ Lemma 14. If W is a PMS instance, Hi
R |0 is satisfiable for all iterations i of OLL′.519

Proof Sketch. The following invariant holds in OLL′: for each meta mi, there exists520

0 ≤ k < ri such that w(oi
k′) = 0 for all k′ ≤ k and w(oi

k′) > 0 for all k′ > k. Therefore, any521

assignment that sets oj
k′ , k′ < k, to true can be extended by setting oj

k′′ to true as well for all522

k′′ < k′ and exactly k′ variables of mi, so that all sum constraints of iteration i are satisfied.523

From there, we use the same argument as we did in the proof of lemma 6 to show that,524

given an assignment to the variables of the metas mj , . . . ,mi, j < i, we can extend to an525

assignment to the variables of mj−1 because any two sum constraints from different iterations526

sum over disjoint sets of variables. ◀527

As was the case for the corresponding lemma in PMRES, Lemma 14 says nothing about528

instances with non-uniform weights.529

4.3 OLL and Linear Programming530

We prove the equivalent of theorem 9 for OLL′.531

▶ Theorem 15. There exists an integer linear program ILP i
P which (1) is logically equivalent532

to the minimum hitting set problem with sets Ci
∪, (2) has size polynomial in |Hi

R|, and (3)533

whose linear relaxation has an optimum which matches that derived by OLL′.534

Proof. We construct a WCSP P i. Its linear relaxation, the local polytope LP (P i), is the LP535

we want. Let P 0 = ∅. At iteration i, where the core discovered is {bi
1, b

i
2, . . . , b

i
ri} ⊆ Si−1,536

P i is defined as P i−1 and additionally the following variables and cost functions:537

0/1 variables bi
1, . . . , b

i
n, oi

1, . . . , o
i
ri−1, corresponding to the propositional variables of the538

same name in W i.539

George Katsirelos 11:15

Unary cost functions with scope bi for each bi ∈ vars(W 0), with c(bi, 0) = 0, c(bi, 1) =540

c0(bi)541

A variable Oi with domain [0, rj], with c(Oi, 0) = ∞ and c(Oi, j) = 0 for all j ∈ [1, ri].542

A decomposition of the sum constraint
∑

j∈[1,ri] b
i
j = Oi, as described by Allouche et al.543

[1].544

Binary cost functions with scope {Oi, oi
j}, for all j ∈ [1, ri − 1] where the tuples {j′, 1}545

and {j′′, 0}, for all 1 ≤ j′ < j < j′′ < ri, have infinite cost, and the rest have cost 0.546

These encode the constraint oi
j ⇐⇒ Oi > j.547

As before, the equivalence of P i and Hi
R is immediate. We show that there exists a548

reformulation of P i that yields the same costs as the weights computed by OLL′, as well as549

the same lower bound. The latter relies on previous results [1], which imply that, we can550

move cost wi
min from bi

1, . . . , b
i
n to Oi, so that we have c(Oi, j) = jwi

min. Since c(Oi, 0) = ∞,551

we can apply prj0(Oi, wi
min). Finally, we can apply ext(Oi = j′, {Oi, oi

j}, wi
min) for all j′ ≥ j,552

followed by prj({Oi, oi
j , o

i
j , w

i
min). Once we complete this for all j ∈ [1, ri], there is no cost553

in Oi, and each oi
j has cost wi

min, as required. ◀554

5 Connection to the Sherali-Adams hierarchy555

The Sherali-Adams hierarchy of linear relaxations [28] of a 0/1 integer linear program is a556

well known construction for building stronger relaxations. At its kth level, it uses monomials557

of degree k and it is known that the level n relaxation (where n is the number of variables558

in the ILP) represents the convex hull of the original ILP, meaning that it solves the ILP559

exactly. On the flip side, the size of the relaxations grows exponentially with the level of the560

hierarchy, meaning that even low level SA relaxations tend to be impractical.561

Formally, we derive the kth level SA relaxation as follows. Let SAu
0 (LP) = LP , the562

linear relaxation of the integer program. First, we define the set of multipliers Mk =563

{
∏

i∈P1
xi

∏
i∈P2

(1 − xi) | P1, P2 ⊆ [1, n], |P1 ∪ P2| = k, P1 ∩ P2 = ∅}, i.e., the set of all564

non-tautological monomials of degree k, using either xi or (1 − xi) as factors. We then565

multiply each constraint c ∈ LP0 by each multiplier m ∈ Mk, simplify using x2 = 1 and566

x(1 − x) = 0, and finally we replace each higher order monomial by a single 0/1 variable to567

get SAu
k(LP).568

In this description, SAu
k does not contain the variables and constraints of LP or any569

SAu
j , j ∈ [1, k − 1]. Here, we use instead SAk(LP) = ∪k

i=0(SAu
k(LP) ∪ cns(k), where cns(k)570

are constraints which ensure consistency between the variables at different levels, i.e., do not571

allow xixj = 1 and xi = 0 at the same time.572

To show the connection with PMRES, we define the depth measure for variables and,573

by extension, cores and formulas. The set the depth of all variables appearing in W 0
574

to be 0, and we write dp(bj) = 0, for bj ∈ vars(W 0). Consider a meta mi. We define575

dp(f i
j) = maxbj∈mi dp(bj) + 1 for all j ∈ [1, ri − 1], and similarly for di

j , j ∈ [1, ri − 1]. With576

an overload of notation, we also write dp(mi) = dp(f i
1). Finally, at iteration i, we write577

dp(W i) = maxj∈[1,i] dp(mj). In words, the depth of a variable of the original instance has578

depth 0, the variables introduced by a meta are one level deeper than variables that appear579

in the meta, the depth of a meta is the same as that of the variables it introduces, and the580

depth of the instance at iteration i is the deepest meta PMRES has discovered.581

The result of this section, is that LP (P i), the linear relaxation that achieves the bound582

computed by PMRES, is a subset of the 2dp(W i) level Sherali-Adams relaxation of a specific583

linear formulation of the hitting set instance Ci
∪.584

SAT 2023

11:16 Analysis of Core-guided MaxSAT Using Linear Programming

▶ Theorem 16. The variables f i
j with dp(f i

j) = k are defined as a linear expression over585

variables of at most the level 2k SA relaxation of the hitting set problem over Ci
∪.586

Proof. By induction. It holds for variables with depth 0, since they are variables of the587

original formula. Assume that it holds for variables of depth k − 1.588

The main observation is that, since f i
j = bi

j ∧ di
j , we can write it as f i

j = bi
jd

i
j , i.e.,589

replace the conjunction by multiplication, which is valid for 0/1 variables. Then, since590

di
j = bi

j+1 ∨ . . . ∨ bi
ri , we can write it as di

j = max(bi
j+1, . . . , b

i
ri). The max operator is a591

piecewise linear function, so this expression is linear. Finally, we replace di
j in the definition592

of f i
j to get f i

j = max(bi
jb

i
j+1, . . . , b

i
jb

i
ri). Recall that dp(bi

l) for l ∈ [j + 1, ri] is at most 2k−1,593

so f i
j can be written as a linear expression over monomials of degree at most 2k, since it594

multiplies two variables which are themselves a linear expression over monomials of degree595

at most 2k−1. ◀596

Theorem 16 reflects the already known connection between Max-Resolution and the597

Sherali-Adams hierarchy in the context of proof systems for satisfiability [17]. Moreover, it is598

known that the kth level of the Sherali Adams hierarchy based on the basic LP relaxation599

(BLP) of a CSP, another name for the local polytope LP, establishes k-consistency [29].600

Theorem 16 is fairly weak. The upper bound is extremely loose and there is no lower601

bound. It is useful, however, as it suggests that discovering a meta of depth k involves602

potentially proving 2k-inconsistency. It also hints towards minimizing the maximum degree603

of monomials entailed by a meta as a metric for choosing among different potential metas.604

In the greater context of PMRES compared to IHS, one way to interpret the result of605

this section is that the two algorithms are instantiations of the same algorithm: they are606

both implicit hitting set algorithms, but where IHS extracts a single core at a time and607

offloads the hitting set computation to a specialized solver, PMRES shifts the burden to608

the SAT solver to not only extract cores, but discover a higher level relaxation so that the609

hitting set problem can be solved in polynomial time.610

6 Discussion611

6.1 PM1612

The results of section 3.3 have of course already been shown for PM1 [7, 25]. The result we613

have shown here that is not shown for PM1 is the existence of a compact LP that computes614

the same bound as PM1. It is not easy to see how the results of section 3.4 could transfer.615

For PMRES and OLL, Hi
R logically entails all the implied cores. This allows us to create616

an ILP representation of the hitting set problem immediately, and then strenghten the LP617

relaxation using higher order cost functions to achieve the same bound. But for PM1, cores618

are solutions of a linear system, so it is not immediately obvious even how to create an ILP619

representation of the hitting set problem without enumerating the (potentially exponentially620

many) cores of the original formula.621

6.2 Practical Implications622

Besides revealing a tight connection between the operation of IHS and core-guided algorithms,623

there are potential practical implications, in particular from theorem 9. We first observe624

that the linear program used to prove theorem 9 is linear in the size of Hi
R, hence the size625

of the LP is not too great. Moreover, it can be further reduced by noting that, in order to626

replicate the bound of PMRES, the dual variable corresponding to several primal constraints627

George Katsirelos 11:17

is always zero. Therefore, they can be removed from the LP without affecting the bound.628

After that, the LP can be further simplified by removing variables that appear in only 1629

constraint and forgetting (in the sense of the knowledge compilation operation of forgetting)630

variables that appear in only two constraints. In this way, the LP is reduced to contain only631

the d and f variables, and uses ri constraints to relate them. In the running example, upon632

discovering the core {b1, b2, b3, b4}, the LP needs only the following constraints to satisfy the633

requirements of theorem 9:634

b1
1 − f1

1 − d1
1 = 0635

b1
2 − f1

2 − d1
2 + d1

1 = 0636

b1
3 − f1

3 + b1
4 + d1

2 = 1637

We omit the details of this mechanical reduction of the LP. But this suggests that the LP638

of theorem 9 is not just a theoretical construct, but a practical way to replicate the reasoning639

of PMRES. This allows a solver which runs PMRES until some heuristic condition is met,640

then passes its progress to IHS using theorem 9 to represent the hitting set problem and the641

lower bound. In the other direction, a solver can run IHS, then solve the hitting set problem642

once with PMRES to construct Hi
R, then continue solving starting from

〈
Hi

R ∪H,wi
〉
, in643

order to simplify solution of the ILP. However, running the two algorithms in sequence is the644

simplest form of combining them. Presumably, the greatest performance can be gained by645

an even deeper integration, using the LP to communicate progress.646

7 Conclusion647

We have narrowed the gap between implicit hitting set and core-guided algorithms for648

MaxSAT. We have shown that the core-guided algorithms PMRES and OLL, the latter649

of which is the basis for the winning solvers of some recent maxsat evaluations, implicitly650

compute a potentially exponentially large set of cores of the original MaxSAT formula at651

each iteration and a minimum hitting set of those cores under some conditions. Moreover,652

we showed that they build a WPMS instance which is logically equivalent to the minimum653

hitting set problem over those cores and can therefore be seen as a compressed, polynomial654

sized, encoding of that problem. In addition, we showed how this problem is solved: by655

generating a subset of a higher level of the Sherali-Adams linear relaxation of that hitting656

set problem. These results open up the possibility for tighter integration between PMRES657

and IHS.658

References659

1 David Allouche, Christian Bessiere, Patrice Boizumault, Simon de Givry, Patricia Gutierrez,660

Jimmy H. M. Lee, Ka Lun Leung, Samir Loudni, Jean-Philippe Métivier, Thomas Schiex,661

and Yi Wu. Tractability-preserving transformations of global cost functions. Artif. Intell.,662

238:166–189, 2016. doi:10.1016/j.artint.2016.06.005.663

2 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial maxsat664

through satisfiability testing. In International conference on theory and applications of665

satisfiability testing, pages 427–440. Springer, 2009.666

3 Carlos Ansótegui and Joel Gabàs. WPM3: an (in)complete algorithm for weighted partial667

maxsat. Artif. Intell., 250:37–57, 2017. doi:10.1016/j.artint.2017.05.003.668

4 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.669

In Proceedings of the International Joint Conference on Artifical Intelligence (IJCAI), pages670

399–404, 2009.671

SAT 2023

https://doi.org/10.1016/j.artint.2016.06.005
https://doi.org/10.1016/j.artint.2017.05.003

11:18 Analysis of Core-guided MaxSAT Using Linear Programming

5 F. Bacchus, J. Berg, M. Järvisalo, R. Martins, and A. (eds) Niskanen. MaxSAT evaluation 2022:672

Solver and benchmark descriptions. Technical Report vol. B-2022-2, Department of Computer673

Science, University of Helsinki, Helsinki, 2022. URL: http://hdl.handle.net/10138/318451.674

6 Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in675

maxsat. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming -676

23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September677

1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 641–651.678

Springer, 2017. doi:10.1007/978-3-319-66158-2_41.679

7 Fahiem Bacchus and Nina Narodytska. Cores in core based maxsat algorithms: An analysis.680

In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT681

2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,682

Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer683

Science, pages 7–15. Springer, 2014. doi:10.1007/978-3-319-09284-3_2.684

8 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set685

maxsat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of686

Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-687

10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.688

Springer, 2020. doi:10.1007/978-3-030-51825-7_20.689

9 Jeremias Berg, Paul Saikko, and Matti Järvisalo. Improving the effectiveness of sat-based690

preprocessing for maxsat. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings691

of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,692

Buenos Aires, Argentina, July 25-31, 2015, pages 239–245. AAAI Press, 2015. URL: http:693

//ijcai.org/Abstract/15/040.694

10 Maria Luisa Bonet, Jordi Levy, and Felip Manyà. A complete calculus for max-sat. In Armin695

Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT696

2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,697

volume 4121 of Lecture Notes in Computer Science, pages 240–251. Springer, 2006. doi:698

10.1007/11814948_24.699

11 M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft700

arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, May 2010. URL: http:701

//dx.doi.org/10.1016/j.artint.2010.02.001, doi:10.1016/j.artint.2010.02.001.702

12 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT703

instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming704

- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.705

Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,706

2011. doi:10.1007/978-3-642-23786-7_19.707

13 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In708

Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability709

Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.710

Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,711

2013. doi:10.1007/978-3-642-39071-5_13.712

14 Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.713

In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th714

International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,715

volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:716

10.1007/978-3-642-40627-0_21.717

15 Tomás Dlask and Tomás Werner. On relation between constraint propagation and block-718

coordinate descent in linear programs. In Helmut Simonis, editor, Principles and Practice719

of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-Neuve,720

Belgium, September 7-11, 2020, Proceedings, volume 12333 of Lecture Notes in Computer721

Science, pages 194–210. Springer, 2020. doi:10.1007/978-3-030-58475-7_12.722

http://hdl.handle.net/10138/318451
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-319-09284-3_2
https://doi.org/10.1007/978-3-030-51825-7_20
http://ijcai.org/Abstract/15/040
http://ijcai.org/Abstract/15/040
http://ijcai.org/Abstract/15/040
https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24
https://doi.org/10.1007/11814948_24
http://dx.doi.org/10.1016/j.artint.2010.02.001
http://dx.doi.org/10.1016/j.artint.2010.02.001
http://dx.doi.org/10.1016/j.artint.2010.02.001
https://doi.org/10.1016/j.artint.2010.02.001
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-030-58475-7_12

George Katsirelos 11:19

16 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of Theory and723

Applications of Satisfiability Testing (SAT), pages 502–518, 2003.724

17 Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. Maxsat resolution and725

subcube sums. ACM Trans. Comput. Logic, 24(1), jan 2023. doi:10.1145/3565363.726

18 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin727

Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT728

2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,729

volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006. doi:730

10.1007/11814948_25.731

19 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver.732

J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019. doi:10.3233/SAT190116.733

20 Javier Larrosa and Federico Heras. Resolution in Max-SAT and its relation to local consistency734

in weighted CSPs. In IJCAI-05, Proceedings of the Nineteenth International Joint Conference735

on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 193–198,736

2005.737

21 Zhendong Lei, Yiyuan Wang, Shiwei Pan, Shaowei Cai, and Minghao Yin. CASHWMaxSAT-738

CorePlus: Solver description. Technical report, Department of Computer Science, University739

of Helsinki, Helsinki, 2022. URL: http://hdl.handle.net/10138/318451.740

22 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided maxsat with soft741

cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint742

Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.743

Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,744

2014. doi:10.1007/978-3-319-10428-7_41.745

23 António Morgado, Alexey Ignatiev, and João Marques-Silva. MSCG: robust core-guided maxsat746

solving. J. Satisf. Boolean Model. Comput., 9(1):129–134, 2014. doi:10.3233/sat190105.747

24 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided maxsat748

resolution. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,749

July 27 -31, 2014, Québec City, Québec, Canada., pages 2717–2723, 2014. URL: http:750

//www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513.751

25 Nina Narodytska and Nikolaj S. Bjørner. Analysis of core-guided maxsat using cores and752

correction sets. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference753

on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,754

volume 236 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,755

2022. doi:10.4230/LIPIcs.SAT.2022.26.756

26 Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95,757

1987. doi:10.1016/0004-3702(87)90062-2.758

27 Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid maxsat solver.759

In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability760

Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,761

Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 539–546. Springer,762

2016. doi:10.1007/978-3-319-40970-2_34.763

28 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the continuous and764

convex hull representations for zero-one programming problems. SIAM Journal on Discrete765

Mathematics, 3(3):411–430, 1990. doi:10.1137/0403036.766

29 Johan Thapper and Stanislav Zivný. Sherali-adams relaxations for valued csps. In Magnús M.767

Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata,768

Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,769

July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages770

1058–1069. Springer, 2015. doi:10.1007/978-3-662-47672-7_86.771

SAT 2023

https://doi.org/10.1145/3565363
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25
https://doi.org/10.3233/SAT190116
http://hdl.handle.net/10138/318451
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.3233/sat190105
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.4230/LIPIcs.SAT.2022.26
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1137/0403036
https://doi.org/10.1007/978-3-662-47672-7_86

	1 Introduction
	2 Background
	2.1 Satisfiability
	2.1.1 Solving WPMS

	2.2 Linear programming and Weighted Constraint Satisfaction

	3 PMRES
	3.1 Max-Resolution
	3.2 Max-Resolution with cores
	3.3 Cores and Hitting Sets of PMRES
	3.4 PMRES and Linear Programming

	4 OLL
	4.1 MaxSAT with soft cardinality constraints
	4.1.1 OLL with implied cores

	4.2 Cores and Hitting Sets of OLL
	4.3 OLL and Linear Programming

	5 Connection to the Sherali-Adams hierarchy
	6 Discussion
	6.1 PM1
	6.2 Practical Implications

	7 Conclusion

