
Core-Guided Linear Programming-based Maximum1

Satisfiability2

George Katsirelos #3

Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France4

Abstract5

The core-guided algorithm OLL is the basis of some of the most successful algorithms for MaxSAT6

in recent evaluations. It works by iteratively finding cores of the formula and transforming it so7

that it exhibits a higher lower bound. It has recently been shown to implicitly discover cores of8

the original formula, as well as a compact representation of its reasoning within a linear program.9

In this paper, we use and extend these results to design a practical MaxSAT solver. We show an10

explicit linear program which matches and usually exceeds the bound computed by OLL. We show11

that OLL can be restated as an algorithm that explicitly computes a feasible dual solution of this12

linear program. This restated algorithm naturally works with an arbitrary dual solution. It can13

in fact be used to improve any LP representation of the MaxSAT instance. This presents a large14

increase of the potential design space for such algorithms. We describe some potential improvements15

from this insight and show that an implementation outperforms the state of the art algorithms on16

the set of instances from the latest MaxSAT evaluation.17

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics18

of computing → Combinatorial optimization; Theory of computation → Logic; Mathematics of19

computing → Solvers20

Keywords and phrases maximum satisfiability, core-guided solvers, linear programming21

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.2822

Supplementary Material Software (Source Code): https://github.com/gkatsi/OLLLP23

Funding Part of this work was funded by the AI Interdisciplinary Institute ANITI. ANITI is funded24

by the French "Investing for the Future – PIA3" program under the Grant agreement n°ANR-23-25

IACL-000226

George Katsirelos:27

1 Introduction28

MaxSAT is the optimization variant of the Boolean propositional satisfiability problem. The29

performance of MaxSAT solvers has increased significantly in the last few years, as evidenced30

by the results of recent MaxSAT evaluations. There exist two main classes of algorithms:31

implicit hitting set (IHS) solvers [9, 11, 10, 4, 5] and core-guided solvers [14, 3, 21, 20, 19, 15].32

However, despite the improvement in performance over the last few years, there are few new33

algorithms. The main core-guided algorithm, OLL [1, 19], was introduced more than 1034

years ago.35

In this paper, we do not quite propose a completely different algorithm. We propose a36

new algorithm, OL3P, which is quite similar to OLL. However, it uses a linear program37

as its main reasoning engine for bounds. The flexibility of the linear program allows us to38

ignore the subtleties of figuring out a correct reformulation and rely on an LP solver to do it.39

This means that the OL3P algorithm can accommodate constraints coming from different40

contexts, which opens up possibilities for further algorithmic development. Specifically, our41

contributions are:42

We show an LP that can capture the lower bound computed by OLL. More formally, it43

© George Katsirelos;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 28; pp. 28:1–28:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.SAT.2025.28
https://github.com/gkatsi/OLLLP
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Core-Guided Linear Programming-based Maximum Satisfiability

admits a dual solution which gives the same lower bound. While the existence of this44

was known [17], we give here an explicit and compact LP.45

We discuss the necessary condition for using an LP to compute bounds in this algorithmic46

framework, namely that the LP is in augmented form.47

We discuss the subtleties and surprises of using LP reduced costs to reformulate MaxSAT48

instances.49

We show how to integrate a new source of constraints, by seeding the LP with clauses50

from the original formula.51

We integrate all these into a solver that clearly outperforms the previous state of the art52

of core-guided MaxSAT solving.53

2 Background54

A propositional formula F in conjunctive normal form (CNF) is a conjunction of clauses,55

where each clause c is a disjunction of literals. A literal is either a propositional variable56

or its negation. We write vars(c) for the set of variables whose literals appear in a clause c57

and vars(F) for the union of vars(c) over all the clauses of F . Given an assignment A of58

variables to true or false, a clause c is satisfied by an assignment if it maps at least one of its59

literals to true, which we write A |= c. Otherwise it is falsified. The CNFSAT (or simply60

SAT) problem asks to determine whether there exists an assignment such that all clauses are61

satisfied.62

The Weighted Partial MaxSAT (WPMS) problem is an extension of SAT to optimization.63

A WPMS instance is a tuple ⟨H, S, w⟩ where H is a set of hard clauses, S is a set of soft64

clauses and w : S → R≥0 is a weight function mapping soft clauses to non-negative weights.65

The cost of an assignment A, written w(A) is infinite if it falsifies any of the hard clauses,66

otherwise it is the sum of the weights of the soft clauses it falsifies:
∑

c∈S,A ̸|=c w(c). The67

objective of WPMS is to find an assignment whose cost is finite and minimum among all68

assignments.69

Equivalently, we can define WPMS as a pair ⟨H, w⟩, where H is a set of hard clauses70

and w is a function w : vars(H)→ R≥0. Alternatively, we can write w as an n-dimensional71

vector, where n is the number of variables, so that we can write the WPMS problem as72

min wT x73

s.t.74

x |= H75

This restatement of WPMS is consistent with recent work [17, 16]. Moreover, it is76

equivalent to the formulation with soft clauses. To convert from soft clauses to this formulation,77

we can reify each soft clause using so-called blocking variables, i.e., introduce a fresh variable78

b ⇐⇒ c for each soft clause c ∈ S and set the cost of b to be the weight of c. This is what79

most WPMS solvers do anyway in order to use assumption-based SAT solvers.80

A core C of a WPMS is a subset of its soft clauses such that the CNF formula C ∪H is81

unsatisfiable. In terms of WPMS solving, this means that at least one of the soft clauses in82

C must be satisfied. In our preferred formulation of WPMS, where an instance is ⟨H, w⟩, a83

core is a set of literals such that at least one of these literals must be true in any feasible84

solution, i.e., any solution that satisfies H. In other words, a core is a positive clause over85

blocking variables.86

George Katsirelos 28:3

As we shall see later, it is useful to ignore the correspondence between literals of blocking87

variables and soft clauses. Indeed, the “cores” extracted by OL3P need not contain exclusively88

positive literals of blocking variables. In fact, both of these conditions are violated: the89

clauses extracted by OL3P may contain literals of any sign; moreover, those may be literals90

of blocking variables, of sum variables 1, and even of variables of the original formula that91

are not blocking variables. Despite the difference with standard terminology, we use the92

term core throughout, as it is the main piece of information given by the SAT solver to the93

MaxSAT algorithm. We emphasize however, that in our setting a core is simply a clause or,94

equivalently, a linear inequality.95

2.1 OLL96

OLL is an algorithm for solving MaxSAT that belongs to a class of iterative SAT-based97

algorithms known as core-guided. It was introduced by Andres et al. [1] in the context of ASP98

and adapted to MaxSAT by Morgado et al. [19]. Its pseudocode is shown in Algorithm 1.99

OLL optimistically tries to find a solution with 0 cost at each iteration, by asking a100

SAT solver to solve the CNF instance that results from setting all literals in the objective101

function to false (line 5). If that succeeds, this is optimal and it returns in line 7. If it fails, it102

extracts a core from that formula and uses it to increase the lower bound by ci, the minimum103

cost of any variable in the core (line 8). It then reformulates the instance in line 9 so that104

each feasible assignment of F has its cost reduced by exactly ci in F i+1. The reformulation105

involves introducing new variables in the objective function, modifying the costs of existing106

variables, as well as building a subformula f i
OLL which logically defines the new variables. As107

long as the reformulation step is correct, OLL increases the lower bound at each iteration,108

hence it is guaranteed to eventually reach the true optimum and terminate.109

In order to avoid confusion between cores of the original formula and cores of the110

reformulated formulas - which can be different - we follow [22] and refer to cores of H ∪ f i
OLL111

as metas.112

Algorithm 1 Core-guided MaxSAT

1 Procedure Core-Guided(F = ⟨H, w⟩)
2 lb = 0
3 f0

OLL = ∅
4 for iteration i = 1, . . . do
5 (a, mi) = solve((H ∪ f i−1

OLL) |w=0)
6 if a ̸= ∅ then
7 return a

8 lb← lb + min{wi−1(j) | xj ∈ mi}
9 (f i

OLL, wi) = Reformulate(f i−1
OLL, wi−1, mi)

We complete the description of OLL with a description of the reformulation step. Let the113

meta at iteration i be mi = {xi
1, xi

2, . . . , xi
ki}. By the definition of F i |w=0, all literals that114

appear in mi have positive cost. We abuse notation and write wi−1(mi) = minx∈mi wi−1(x)115

for the minimum cost among the literals that appear in mi. OLL increases the lower bound116

by wi−1(mi) and introduces sum variables, defined as oi
j ⇐⇒

∑
x∈mi ≥ j for 2 ≤ j ≤ ki.117

1 Sum variables are introduced by OLL and will be explained in section 2.1

SAT 2025

28:4 Core-Guided Linear Programming-based Maximum Satisfiability

Finally, it reduces by wi−1(mi) the cost of all literals in mi and sets to wi−1(mi) the cost of118

the positive literals of all oi
j . Formally,119

wi(x) =


wi−1(x)− wi−1(mi) if x ∈ mi

wi−1(mi) if x ∈ {oi
2, . . . , oi

ki}
wi−1(x) otherwise

120

To see why this is a reformulation, observe that we can combine the fact that
∑

x∈mi x ≥ 1121

with the definition of the sum variables to get122

∑
x∈mi

x = 1 +
ki∑

j=2
oi

j (1)123

, because when d of the ki variables in mi are true, exactly the d − 1 sum variables124

oi
2, . . . , oi

d will be true, by their definition. To complete the reformulation, we multiply125

equation (1) by wi−1(mi) and replace its left-hand side in wi−1 by its right hand side, which126

gives wi. Note that this differs from the usual proof of correctness of OLL, but is useful to127

better understand the new algorithm OL3P.128

2.2 Linear programming129

Linear programs are problems of the form min cT x : Ax = b ∧ x ∈ Rn
≥0, where x is a vector130

of n real (rational) valued variables, c ∈ Rn, b ∈ Rm and A ∈ Rm×n. The problem can be131

solved in polynomial time. We restrict our attention here to the case where x ∈ [0, 1]n.132

This form of linear programs, where all constraints are equalities, is called the augmented133

form. It is possible to convert any linear program which includes inequalities by introducing134

slack variables. For example the constraint aT x ≥ b becomes [a − 1]T [xs] = b, where s is a135

fresh variable and is the slack variable of this constraint.136

For each linear program P (called the primal), we can define a dual problem D(P), which137

is max bT y : AT y ≤ c ∧ y ∈ Rm, where y is a vector of m real variables, called the dual138

variables or dual multipliers. An important theorem in linear programming is strong duality:139

the optima of P and D(P) are exactly the same. In fact, for every feasible solution y of140

D(P), its cost is a lower bound on the optimum of P .141

There exists a correspondence between variables of the primal and constraints of the142

dual. Indeed, the ith column of P contains the coefficients of the ith primal variable and also143

describes the ith dual constraint. From each dual solution y, we can define the reduced cost144

of each primal variable, rcy(x). This is the slack of the corresponding dual constraint, i.e.,145

ci − AT
i y. The theorem of complementary slackness states that for every pair of optimal146

solutions x, y, it holds xi(ci−AT
i y) = 0, i.e., if the reduced cost of x is non-zero, then x must147

be 0 in the primal and vice versa.148

Reduced costs are used typically for reduced cost fixing when the linear program is a149

relaxation of a discrete optimization problem. For a given dual solution y, cT y + ci −AT
i y is150

a lower bound on the cost of any solution that assigns xi a non-zero value. If that matches151

or exceeds the cost of an incumbent solution of the discrete problem, we can fix xi to 0. By152

convention, if a variable is fixed to its 1 in the primal, its reduced cost is non-positive and153

cT y − ci + AT
i y is a lower bound on the cost of any solution that assigns xi less than 1 2.154

2 Negative reduced costs are not true reduced costs. The would imply negative slack of the corresponding

George Katsirelos 28:5

In the case of augmented form linear programs, we can make a stronger statement on155

reduced costs: for any feasible y, the function bT y + (rcy)T x is equal to cT x in every feasible156

point of the primal. We can therefore reformulate P using the reduced costs. We give an157

elementary proof of this fact below.158

▶ Theorem 1. Let P be a linear program min cT x : Ax = b. For a given dual feasible solution159

y, let P ′ = min bT y +(rcy)T x : Ax = b. Then P = P ′, i.e., they have identical sets of feasible160

solutions and each feasible solution has the same cost in P and P ′.161

Proof. Since the constraints of both problems are identical, we only need to show that the162

objectives are identical, subject only to Ax = b.163

bT y + (rcy)T x = bT y + (cT −AT y)T x = cT x + bT y − yT Ax (2)164

Finally, since Ax = b, we have yT Ax = yT b = bT y, so bT y + (rcy)T x = cT x, as165

required. ◀166

▶ Example 2. Consider the following pair of primal and dual LPs:167

(Primal) (Dual)168

min x1 + x2 max y169

s.t.170

x1 + x2 ≥ 1 y ≥ 0171

x1 ≥ 0 y ≤ 1172

x2 ≥ 0 y ≤ 1173

174

The optimum of this is 1, witnessed by the primal solution x1 = 1, x2 = 0 and the dual175

solution y = 1. The reduced cost of both x1 and x2 under this dual solution is 0, since the176

corresponding dual constraint for both is y ≤ 1, which has slack 0. Suppose that we try to177

use reduced costs as described in theorem 1. This gives the objective function min 1, which178

is constant. This is not equal to the objective min x1 + x2 at all points. For example, the179

feasible primal assignment x1 = x2 = 1 has cost 2 under the original objective. Therefore,180

the scheme of theorem 1 is not a reformulation scheme for LPs not in augmented form.181

Suppose now that we convert this LP to augmented form by adding the slack variable s182

in the sole constraint:183

(Primal) (Dual)184

min x1 + x2 max y185

s.t.186

x1 + x2 − s = 1187

x1 ≥ 0 y ≤ 1188

dual constraint, which means a non-feasible dual solution. Instead, they are the negated reduced cost of
a slack variable and LP solvers use this convention to avoid exposing this slack variable.

SAT 2025

28:6 Core-Guided Linear Programming-based Maximum Satisfiability

x2 ≥ 0 y ≤ 1189

s ≥ 0 − y ≤ 0190

191

This has the same optimum, witnessed by the primal solution x1 = 1, x2 = 0, s = 0 and192

the dual solution y = 1. The reduced costs of x1 and x2 are still 0, but the reduced cost of s193

is 1. Therefore the scheme of theorem 1 gives the objective min 1 + s, which we can confirm194

preserves the costs of all feasible primal assignments. Indeed, the assignment x1 = x2 = 1195

above corresponds to the assignment with x1 = x2 = s = 1 in the augmented LP. This196

evaluates to 2 under the new objective, as it does under the original objective. ◀197

3 OL3P198

In this section, we describe OL3P. First, we note that it has been previously shown [17] that199

at iteration i of a run of OLL, we can construct an LP from the metas m1, . . . , mi, which is200

logically equivalent to f i
OLL and whose optimum is at least the lower bound computed by201

OLL. However, that LP is only given implicitly, as the local polytope of a weighted CSP with202

desirable properties. Here, we give an explicit construction for such an LP. It has the same203

size asymptotically - linear in the size of the meta - but it is smaller. A similar construction204

has been proposed by Berg et al. in the context of proof logging for OLL [6].205

A crucial requirement is for the LP to be in augmented form, i.e., with equalities only, so206

that dual solutions give reformulations. Our starting point is equation (1):207

LPOLL(mi) ≡
∑

x∈mi

x = 1 +
ki∑

j=2
oi

j (3)208

∪ oi
j − oi

j+1 − ei
j = 0 ∀j ∈ [2, ki − 1] (4)209

∪ ei
ki = oi

ki (5)210

We name yi
sum the dual multipliers corresponding to constraint (3) for mi.211

▶ Theorem 3. For any execution of OLL, at its ith iteration, there exists an LP which (a)212

has size linear in f i
OLL, (b) is logically equivalent to f i

OLL, (c) has optimum that is at least213

as great as the lower bound computed by OLL, (d) admits a dual feasible solution such that214

the reduced costs match the objective function computed by OLL.215

Proof. The LP is given by constraints (3)–(5).216

(a) is obvious, as the total number of non-zeros is 4ki − 3: each of the ki literals of mi
217

appears once, each of the ki − 1 sum variables appears twice, and each of the ki − 1 equality218

variables appears once.219

(b) For (3), the fact that it follows from f i
OLL was explained in section 2. The constraints220

(4)–(5) encode that oi
j ≥ oi

j+1. The variable ei
j is a slack variable that also encodes the fact221

that
∑

x∈mi x = j. Indeed, if ei
j = 1 then oi

j = 1 and oi
j+1 = 0, so the sum is exactly j. If222

ei
j = 0, then oi

j = oi
j+1, so the sum is either strictly less or strictly greater than j. The last223

constraint (5) exists only for uniformity. The proof that these entail the SAT encoding of224

the sum constraints is similar.225

(c), (d). Set the dual variable yi
sum for each iteration i to wi−1(mi) and every other226

dual variable to 0. We show that this has the required properties by induction. For the227

first meta, m1, w0(m1) is at most equal to w0(x) for the original variables x ∈ m1 and they228

George Katsirelos 28:7

appear only in a single new constraint, constraint (3) for m1. Hence the dual constraint229

of each variable x ∈ m1 is y1
sum ≤ w0(x), which is satisfied. Moreover, its reduced cost230

under this dual assignment is w0(x) − w0(mi). For the sum variables the dual constraint231

is −y1
sum ≤ w0(x) ≤ 0, which is satisfied since w0(mi) is positive and the reduced cost is232

exactly w0(mi), as required.233

For the inductive step, at iteration i observe that the only change made to the dual234

with the addition of the new constraint is that its dual variable yi
sum is added to the dual235

constraint of each x ∈ mi. By the inductive hypothesis, these constraints have slack equal236

to the cost assigned to the corresponding primal variables by OLL. Therefore, by setting237

yi
sum = wi−1(mi), we see with the same reasoning as above that all dual constraints are238

satisfied and the reduced costs are set as OLL. ◀239

▶ Example 4. Suppose that OLL runs on an instance with objective function

min 5x1 + 4x2 + 3x3 + 2x4 + x5

and that it finds the core x1 + x2 + x3 ≥ 1 at iteration 1 and the meta o1
2 + x2 + x4 ≥ 1240

at iteration 2. Then the LP after iteration 1 is241

(Primal) (Dual)242

min 5x1 + 4x2 + 3x3 + 2x2 + x5 max y1
sum243

s.t.244

x1 + x2 + x3 − o1
2 − o1

3 = 1245

o1
2 − o1

3 − e1
2 = 0246

x1 ≥ 0 y1
sum ≤ 5247

x2 ≥ 0 y1
sum ≤ 4248

x3 ≥ 0 y1
sum ≤ 3249

o1
2 ≥ 0 − y1

sum ≤ 0250

o1
3 ≥ 0 − y1

sum ≤ 0251

And after iteration 2 it will be252

(Primal) (Dual)253

min 5x1 + 4x2 + 3x3 + 2x2 + x5 max y1
sum + y2

sum254

s.t.255

x1 + x2 + x3 − o1
2 − o1

3 = 1256

o1
2 + x2 + x4 − o2

2 − o2
3 = 1257

o1
2 − o1

3 − e1
2 = 0258

o2
2 − o2

3 − e2
2 = 0259

x1 ≥ 0 y1
sum ≤ 5260

x2 ≥ 0 y1
sum + y2

sum ≤ 4261

x3 ≥ 0 y1
sum ≤ 3262

o1
2 ≥ 0 − y1

sum + y2
sum ≤ 0263

o1
3 ≥ 0 − y1

sum ≤ 0264

o2
2 ≥ 0 − y2

sum ≤ 0265

SAT 2025

28:8 Core-Guided Linear Programming-based Maximum Satisfiability

o2
3 ≥ 0 − y2

sum ≤ 0266

All variables in the primal are non-negative, but we only show above those that have a267

corresponding dual constraint. In both cases, we have in the same line a primal constraint268

and the bounds of its dual variable (unbounded here because the primal constraints are269

equalities), and the bounds of primal variable with the corresponding dual constraints. We270

can confirm that the dual solution y1
sum = 3, y2

sum = 1 is feasible and the reduced costs of271

the variables match what is computed by OLL. ◀272

One consequence of theorem 3 and theorem 1 is that we can change the reformulation273

step of OLL so that it uses an optimal dual solution to compute a reformulation, rather274

than that which is statically computed. Indeed, the reformulation step can be discarded275

altogether and the algorithm can use reduced costs directly.276

Algorithm 2 OL3P

1 Procedure OL3P (F = ⟨H, w⟩)
2 lb = 0
3 f0

OLL = ∅
4 LP 0 = min(w0)T x

5 for iteration i = 1, . . . do
6 (a, mi) = solve((H ∪ f i−1

OLL) |rc=0)
7 if a ̸= ∅ then
8 return a

9 f i
OLL = f i−1

OLL ∪ CNF (oi
j ⇐⇒

∑
x∈mi ≥ j) ∪ CNF (ei

j ⇐⇒
∑

x∈mi = j)
10 LP i = LP i−1 ∪ LPOLL(mi)
11 lb = opt(LP i)

We show the pseudocode for this algorithm, which we call OL3P, in Algorithm 2. This277

follows the outline of OLL. It starts with lower bound zero and initializes the auxiliary278

formula f0
OLL and corresponding LP LP 0 to the empty formula. Then, in each iteration of279

the loop in lines 5-11, it tests satisfiability of the formula (H ∪ f i−1
OLL) |rc=0 in line 6. This280

formula sets to false all variables which have non-zero reduced cost. In the first iteration,281

models of this formula correspond to feasible assignments of ⟨H, w⟩ that have cost 0 overall.282

In subsequent iterations, they correspond to assignments whose cost matches the current283

lower bound. If that formula is satisfiable, it reports optimality and exits in line 8. Otherwise,284

the SAT solver gives a meta mi. In line 9, it adds to the subformula f i+1
OLL the standard285

OLL constraints which introduce variables oi
j to count how many variables of mi are true, so286

that oi
j is true if at least j variables of mi are true. It additionally introduces the variables287

required by OL3P, where ei
j is true if exactly j variables of mi are true. It also adds the288

corresponding linear constraints (3)-(5) to the LP in line 10. In constrast to OLL, it does289

not update the lower bound using the minimum cost of variables in mi, nor does it update290

variable costs. Instead, it resolves the LP at line 11 to get an updated bound, as well as291

updated reduced costs for the next iteration.292

▶ Theorem 5. OL3P is sound and complete293

Proof. For soundness, note that lower bounds are derived from the solution of an LP, which294

is itself built using constraints given by a SAT solver. Hence, all lower bounds are correct.295

George Katsirelos 28:9

For completeness, note that since the LP is in augmented form, reduced costs define an296

equivalent objective. Hence, if the SAT solver determines that the instance (H ∪ f i−1
OLL) |rc=0297

is satisfiable, i.e., it is satisfiable using only literals with 0 reduced cost, the cost of that298

assignment is exactly the optimum of the LP. Finally, since the lower bound increases at299

each iteration and the optimum is finite, the algorithm eventually exits with an optimum300

solution. ◀301

While the transition from precomputed reformulation to one driven by LP dual solutions302

is straightforward, we need to highlight some subtlety in the notation. The instance given303

to the SAT solver is (H ∪ f i−1
OLL) |rc=0, which does not require that literals are positive. If304

a variable is fixed to 1 and has negative reduced cost, it means that it must be true in305

solutions. While this is not generally problematic with our formulation of MaxSAT, it is306

different when solving MaxSAT instances in the WCNF format. Specifically, if this happens307

for a blocking variable, we require that the clause be falsified, which means that we must308

encode full reification, not just ¬c =⇒ b, as is typically done to improve performance.309

Similarly, if this happens for a sum variable oi
j , it is required that the sum is at least j.310

▶ Example 6. Suppose OL3P is working on an instance with objective

min 2x1 + 3x2 + 4x3

and it has discovered the constraint x1 + x2 + x3 ≥ 2. The usual OLL reformulation311

would use this constraint to increase the lower bound to 4. However, we can see that there is312

no way to make two of these variables true and pay any less than 5. Indeed, the LP solver313

will find a dual solution in the reduced cost of x1 is -2. This means that x1 must be true. If314

it is false, the true variables must be x2 and x3, which have joint cost 7.315

Now suppose that x1, x2, x3 are blocking variables for soft clauses. If we set x1 to false316

but the clause is not fully reified, the SAT solver can discover a solution that satisfies the317

clause of x1, nevertheless sets x1 to true, and its cost is higher than the bound computed by318

the LP. It will then terminate with LB < UB, which is erroneous behavior. ◀319

The encoding used by many OLL-based solvers, totalizers [15, 23], is not fully reified.320

Instead, we have to use a different encoding, which can be made to encode full reification, in321

this case an encoding based on sorting networks [12]. A feature of the totalizer encoding322

is that it is incremental. For each meta mi, only the variable oi
2 needs to be introduced323

immediately, because any meta that contains oi
3 can be transformed into one that contains324

oi
2, as long as both have non-zero reduced cost. Therefore, practical implementations of OLL325

only encode oi
j+1 when the cost of oi

j becomes zero. Sorting networks do not have this feature.326

This is a drawback of our approach, because it means that the SAT solver needs to solve327

a more complicated formula earlier than it would if it was possible to use an incremental328

encoding.329

3.1 Seeding the LP330

MaxHS [9], an implicit hitting set solver, which encodes the optimization part of MaxSAT331

as an integer linear program (ILP), makes extensive use of seeding. Given a MaxSAT formula332

F = ⟨H, w⟩, before it enters the main loop, MaxHS looks for clauses c ∈ H which contain333

only literals of variables that appear in the objective. Then, it adds c to the ILP representation334

of the problem it solves. In addition, when there is a small number of additional variables335

that must be added to the ILP in order to give it some clauses, MaxHS adds those variables336

and corresponding clauses. While this may make the ILP larger and hence more difficult337

SAT 2025

28:10 Core-Guided Linear Programming-based Maximum Satisfiability

to solve, it can also provide useful information which improves both the bounds and the338

efficiency of the ILP solver.339

We can do the same with OL3P. However, where MaxHS can simply add clauses to340

the ILP problem it maintains, we are restricted to having LPs in augmented form. Hence,341

when we find a clause c that is suitable for seeding, we add LPOLL(c) to LP 0. The problem342

with this is that, while in MaxHS adding a clause to the ILP is just a single constraint, in343

OL3P we need to add 4 times as many non-zeros and introduce 2|c| − 1 new variables. This344

encoding has to be mirrored on the SAT side. However, only a relatively small number of345

constraints get a non-zero dual multiplier. Even if the LP and SAT solvers can determine346

that all the extra variables that appear in constraints with 0 dual multiplier are redundant,347

it still increases preprocessing time.348

We can do better than that by reconsidering the proof of theorem 1. We can see that it349

is not necessary for the LP to have all constraints in the form Ax = b. Indeed, suppose that350

an LP has both equality constraints Ax = b and inequality constraints A′x ≥ b′ and suppose351

that the dual multiplier of every constraint in A′ is 0. Then we can rewrite equation (2) as352

follows:353

bT y + (rcy)T x = bT y + (cT −AT y −A′T y)T x (6)354

But since y assigns 0 to the multiplier of every constraint in A’, we have A′T y = 0 and355

the proof proceeds as before.356

This allows us to make a simple but important optimization in seeding: when we initially357

seed the LP, we can leave all clauses as inequality constraints. This reduces the total number358

of variables in the LP and removes the need to add the corresponding sum constraints on the359

SAT side. When we actually solve an LP and find an inequality with non-zero dual multiplier,360

we can convert it to an equality, add all the necessary slack variables and corresponding sum361

constraint on the SAT side, then reuse the same dual solution to continue execution. But362

the number of constraints with non-zero dual multiplier is typically much smaller than the363

entire set of constraints. For instances where we can seed many or even all the initial clauses364

of the problem, this technique can represent significant savings.365

3.2 Combining with implicit hitting set366

Algorithm 2 is presented as extracting reduced cost-based metas at each iteration. As our367

argument in section 3.1 showed, however, the correctness of the algorithm does not depend in368

any way on the specific type of constraints. To this end, recall that when viewed as an ILP,369

LPOLL encodes a hitting set problem over a set of cores derived from the metas discovered370

so far [17]. Hence, if we solve this minimum hitting set problem, we get a new source of371

cores. These cores are easier to discover than the metas discovered by the main OL3P loop.372

Unfortunately, in early experiments, CPLEX proved to be very poor at solving ILPOLL,373

the integer version of LPOLL. Even in cases where the optimum of the LP matches the374

optimum of the ILP, CPLEX struggles to find the optimum solution. Exploring this direction375

further remains future work.376

3.3 Reduced cost fixing377

As mentioned earlier, reduced cost fixing is a technique that is widely used in ILP solving, as378

well as in constraint programming [13] and in MaxHS [4]. In the literature of core-guided379

solvers, the closest analogue is hardening [15]. In particular, if we use exactly the potentially380

George Katsirelos 28:11

suboptimal dual solutions described previously [17] that simulate OLL, reduced cost fixing381

is exactly equivalent to hardening. Here, we use an optimal solution, which means we can382

potentially fix more variables. Note, however, that finding optimal reduced costs is itself a383

non-trivial problem [8].384

There are two considerations for using reduced cost fixing with OL3P. First, note that a385

practical implementation of OL3P must implement techniques like stratification and weight-386

aware core extraction (covered in later sections). These split the execution of the solver into387

distinct phases of core (meta) extraction, each of which finishes with a satisfiable instance,388

generating a solution, hence an upper bound. This enables reduced cost fixing in the first389

place. However, it is now no longer necessary that the execution of the solver finishes with a390

SAT instance.391

▶ Example 7. Suppose that a variable x always appears positively in every optimal solution392

of an instance F . Suppose further that we have already found an optimal solution of F and393

that the reduced cost of x is equal to its actual marginal cost. Then, x will be set to false by394

reduced cost fixing. There are three possible outcomes from this: either the LP reports a395

lower bound that exceeds the upper bound, the LP is infeasible, or the SAT solver reports396

an empty conflict. While seemingly erroneous, these results are correct. We are looking for397

a solution that improves on the optimum and we have pruned a literal that appears in all398

optimum solutions. The system is unsatisfiable, so any inference is correct. ◀399

A second consideration is that, knowing the specific relationship among the variables400

oi
2, . . . , oi

ki , we can compute better reduced costs. Consider oi
3 for some i. When that is401

true, it implies also oi
2, therefore we incur the cost of the reduced cost of both oi

2 and oi
3. In402

other words, the true marginal cost of oi
3 is mc(oi

3) ≥ rcy(oi
2) + rcy(oi

3). This generalizes to403

all indices of a sum. In preliminary experiments, we found that this technique can be very404

effective in fixing a large number of sum variables, but ends up hindering the performance of405

the SAT solver. We therefore do not use this technique in section 4.406

3.4 Stratification407

Stratification [15, 2] is a technique for improving solving of instances with diverse sets of408

costs. It splits variables of the objective into buckets, such that the higher the bucket index,409

the smaller the cost of the variable. It then solves the instance ignoring all but the first410

bucket of variables, i.e., treating all the other variables as if they have reduced cost 0. When411

that finishes, it adds variables from the next bucket and so on.412

Stratification is that much more important for OL3P. The dual solution is not guaranteed413

to yield integer reduced costs and in fact there typically exist many variables with very small414

reduced cost. Without stratification, OL3P will be left to find metas with very small cost415

and make slow progress towards the optimum.416

In addition, we implement rank-based stratification. We define the rank of an original417

variable of the instance to be rank(x) = 0. For all sum or equality variables corresponding to418

meta mi, let r be the maximum rank among all x ∈ mi. Then we set rank(oi
j) = rank(ei

j) =419

r + 1 for j ∈ [2, ki]. For each cost-based bucket, we first extract all metas involving variables420

of rank 0, then 1, and so on. Note that metas of rank 0 are cores of the original formula.421

The reasoning for this heuristic is that the higher the rank of the variables in a core, the422

harder it is for the SAT solver to discover, hence we want to extract the easier cores first.423

SAT 2025

28:12 Core-Guided Linear Programming-based Maximum Satisfiability

4 Experimental evaluation424

In this section, we describe the implementation details of a practical implementation of425

OL3P and evaluate its performance.426

4.1 Experimental Setup427

We implemented OL3P as an alternative algorithm on top of MaxHS 3. We evaluate two428

variants. The first, OL3P, implements the base algorithm OL3P shown in Algorithm 2,429

with rank-based stratification, reduced cost fixing, weight aware cost extraction, and seeding430

as described in section 3.1. The second, OL3P-S is the same but performs no seeding.431

This variant is the closest to base OLL, as the only major difference is that it uses LP for432

reformulation. Both variants use IBM CPLEX version 22.1.1.0 to solve the LP and CaDiCaL433

version “sc-2021” as a SAT solver. The ILP solver of CPLEX is not used. Additionally, both434

variants use the MaxPRE preprocessor [18].435

We compare against CashWMaxSAT version “DisjCom-S6” [23], the winner of the 2024436

MaxSAT evaluation in the weighted track. By default, CashWMaxSAT uses a portfolio437

strategy whereby, before launching OLL, it gives an instance to the SCIP ILP solver [7]438

and lets it run for some time. Only if SCIP does not solve the instance, does it execute the439

OLL algorithm. On the other hand, it does not use MaxPRE by default. We tested four440

configurations of CashWMaxSAT, varying the use of this feature and the use of MaxPRE:441

1. As run in the 2024 evaluation, where the SCIP timeout is 600 seconds442

2. As above, but with the SCIP timeout set to 300 seconds to match the lower timeout we443

used (see below)444

3. With SCIP disabled, but using MaxPRE445

4. Without either SCIP or MaxPRE446

The latter two are more directly comparable to OL3P-S, as they are not portfolios. They447

all use CaDiCaL version 2.0.0 as a SAT solver.448

Finally, we compared against MaxHS, in its configuration from the 2022 MaxSAT449

evaluation, which is the last time it participated, using IBM CPLEX version 22.1.1.0 to450

solve the ILP and CaDiCaL version “sc-2021” as a SAT solver. MaxHS is also a portfolio451

solver. When the number of soft clauses is relatively small, it launches LSU instead. When452

the problem is small or the number of variables that do not appear in soft clauses is small, it453

delegates to CPLEX.454

We compare the solvers on the instances from the weighted track of the 2024 MaxSAT455

evaluation. We ran all solvers for 1800 seconds of CPU time on a cluster of 14-core Intel456

Xeon E5-2695 v3 CPUs running at 2.30GHz.457

4.2 Results458

Surprisingly, the four different configurations of CashWMaxSAT varied little in their per-459

formance, solving 405, 409, 410, and 406 instances, respectively. It is possible that the460

shorter timeout compared to the evaluation made the portfolio ineffective. We retained461

configurations 2 and 3, as those exhibiting the best performance.462

3 https://github.com/gkatsi/OLLLP

https://github.com/gkatsi/OLLLP

George Katsirelos 28:13

We show in Figure 1 a plot of the relative performance of the four solvers. Comparing463

only the core-guided solvers, we see that even though the solvers end at similar numbers of464

solved instances, both variants of OL3P-S are better than CashWMaxSAT. We give a more465

detailed breakdown of the number of instances solved by family in Table 1. We see that466

most of the gains of OL3P come from the judgement-aggregation family. There, the467

seeded LP computes a near optimum bound, then it takes just a few iterations to find the468

optimum solution and prove optimality. In OL3P-S and CashWMaxSAT, this information is469

not available and they make slow progress, ending with a significant optimality gap. In the470

rest of the families, OL3P sometimes exhibits a small advantage, but not consistently.471

0 250 500 750 1000 1250 1500 1750
0

100

200

300

400

OLLLP-S
OLLLP
cash+maxpre
MaxHS

0 250 500 750 1000 1250 1500 1750
380

390

400

410

420

430

440

OLLLP-S
OLLLP
cash+maxpre
MaxHS

Figure 1 Results on exact weighted track of 2024 MaxSAT evaluation. On the right, zoomed in
on the y axis so that the differences are highlighted.

We also give in Table 2 the average time needed to solve instances (ignoring instances472

that timed out), as well as the PAR2 score of each solver (the sum of the runtimes over all473

instances, with instances that timed out or ran out of memory counting as twice the timeout,474

hence 3600 here). We see that both OL3P-S and OL3P have significantly reduced average475

solving time and lower PAR2 compared to CashWMaxSAT. This means that, not only does476

OL3P solve more instances, it does so more quickly on average. The CashWMaxSAT +SCIP477

configuration does particularly poorly in these metrics because of the sequential portfolio it478

uses: for every instance that SCIP is unable to solve, it pays a penalty of 300 seconds. These479

observations are confirmed in the scatter plots in Figure 2. However, these plots additionally480

show that no solver dominates another, as there exist several instances that are solved by481

only one solver in each pair.482

In comparison to MaxHS, all core-guided solvers perform worse overall. However, in some483

families, like judgement-aggregation and warehouses, OL3P reduces the performance484

gap. Additionally, the average solving time of both OL3P-S and OL3P is signficantly lower485

in solved instances where it does prove optimality, although this is not sufficient to cover the486

gap in PAR2 score caused by the difference in number of instances solved.487

4.3 LP overhead488

A natural question for both OL3P-S and OL3P is on the overhead of LP solving, since we489

replace the very cheap reformulation procedure of OLL by solving an LP. For OL3P-S, this490

overhead is negligible. The solver spent just 16s solving the LP over the entire set of solved491

instances. The maximum amount of time spent in the LP solver in any one instances was492

just 1.15 s. In only 3 instances was the LP solver time more than 1 second, and they all were493

instances where the total time to solve them was more than 300 seconds. For OL3P, the494

SAT 2025

28:14 Core-Guided Linear Programming-based Maximum Satisfiability

Family # Cash Cash +SCIP MaxHS OL3P-S OL3P
abstraction-refinement 11 11 10 11 11 11
af-synthesis 15 8 4 12 3 4
auctions 15 14 15 15 14 14
BTBNSL 15 3 2 7 3 3
causal-discovery 15 14 14 12 14 14
correlation-clustering 15 9 9 9 9 9
CSG 10 10 10 10 10 10
css-refactoring 11 11 11 8 11 11
dalculus 15 15 13 15 15 15
decision-tree 15 0 0 0 0 0
drmx-cryptogen 15 15 11 15 15 13
frb 15 14 11 14 15 15
haplotyping-pedigrees 15 15 15 15 15 15
IMLIB 16 16 16 16 16 16
judgment-aggregation 15 1 12 14 0 10
lisbon-wedding 15 3 3 1 3 4
max-realizability 15 14 14 13 13 12
MaxSATQueriesinInterpretableClassifiers 15 14 14 13 13 13
metro 15 15 15 15 15 15
MinimumWeightDominatingSetProblem 10 0 0 2 0 0
mpe 15 13 13 13 14 12
mpmcs 15 15 15 15 15 15
ParametricRBACMaintenance_mse20 15 0 0 0 3 3
planning 33 33 33 33 33 33
preference_planning 12 12 12 12 12 12
protein_ins 12 12 12 12 12 12
pseudoBoolean 15 14 14 14 14 14
qcp 15 15 15 15 15 15
quantum-circuit 15 15 15 14 15 15
railway-transport 5 2 2 1 2 1
ramsey 4 2 2 1 2 2
relational-inference 8 4 5 6 5 5
rna-alignment 15 10 10 15 15 15
setcover 6 0 3 3 0 0
spot5 15 13 10 11 11 11
switchingactivitymaximization 9 0 0 1 1 1
synplicate 40 15 15 16 15 15
tcp 15 13 13 13 13 14
timetabling 13 10 10 7 11 9
upgradeability 15 15 15 15 15 15
warehouses 8 3 8 8 5 8

Table 1 Number of instances solved by each solver per family

overhead is much greater. Cumulatively, OL3P spent 8163.91 seconds in the LP solver (25495

seconds per solved instance on average). The maximum amount of time in the LP solver496

in any one instance was 1343 seconds. The judgement-aggregation instances consume497

most of that time, with 4 of them spending more than 1000 seconds in the LP solver, each.498

Part of the reason for this overhead is that the current implementation is not particularly499

careful to be efficient with its use of the LP solver. These results suggest that more attention500

should be given to this, especially if other sources of constraints are used to populate the LP.501

Techniques like column and row generation can also speed up LP solving.502

5 Conclusion503

We have presented OL3P-S, a core-guided algorithm for MaxSAT that uses a linear program504

to compute reformulations. This has advantages with respect to the behavior of the algorithm505

itself, as it computes stronger lower bounds from the same information. Moreover, since506

George Katsirelos 28:15

Solver PAR2 score avg time
MaxHS 576598 160.462 s
CashWMaxSAT 640293 148.031 s
CashWMaxSAT +SCIP 670618 213.735 s
OL3P-S 614729 94.2319 s
OL3P 586971 94.9198 s

Table 2 PAR2 scores

it can use constraints generated in any way, it opens many algorithmic possibilities. We507

explored here two: one that worked fairly well, seeding the LP with constraints of the508

MaxSAT formula; and one that did not, which was to try to solve the hitting set problem509

described by the LP as an integer program. Regardless, it is likely that more possible ways510

of enriching and using the linear program will emerge.511

References512

1 Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-513

based optimization in clasp. In Technical Communications of the 28th International Conference514

on Logic Programming (ICLP’12)(2012), pages 212–221. Schloss Dagstuhl–Leibniz-Zentrum515

für Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.211.516

2 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving sat-based517

weighted maxsat solvers. In Michela Milano, editor, Principles and Practice of Constraint518

Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October519

8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86–101.520

Springer, 2012. doi:10.1007/978-3-642-33558-7_9.521

3 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial maxsat522

through satisfiability testing. In International conference on theory and applications of523

satisfiability testing, pages 427–440. Springer, 2009. doi:10.1007/978-3-642-02777-2_39.524

4 Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in525

maxsat. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming -526

23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September527

1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 641–651.528

Springer, 2017. doi:10.1007/978-3-319-66158-2_41.529

5 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set530

maxsat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of531

Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-532

10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.533

Springer, 2020. doi:10.1007/978-3-030-51825-7_20.534

6 Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, and Dieter Vandesande.535

Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on536

Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages537

1–22, 2023. doi:10.1007/978-3-031-38499-8_1.538

7 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim539

Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,540

Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf541

van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns,542

Gioni Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano,543

Mark Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite544

9.0. Technical report, Optimization Online, February 2024. URL: https://optimization-online.545

org/2024/02/the-scip-optimization-suite-9-0/.546

SAT 2025

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-031-38499-8_1
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/

28:16 Core-Guided Linear Programming-based Maximum Satisfiability

0 250 500 750 1000 1250 1500 1750
OLLLP Time (s)

0

250

500

750

1000

1250

1500

1750

OL
LL

P-
S

Ti
m

e
(s

)

Time to Optimality: OLLLP vs OLLLP-S
y=x

0 250 500 750 1000 1250 1500 1750
OLLLP Time (s)

0

250

500

750

1000

1250

1500

1750

ca
sh

+m
ax

pr
e

Ti
m

e
(s

)

Time to Optimality: OLLLP vs cash+maxpre
y=x

0 250 500 750 1000 1250 1500 1750
OLLLP Time (s)

0

250

500

750

1000

1250

1500

1750

ca
sh

+S
CI

P
Ti

m
e

(s
)

Time to Optimality: OLLLP vs cash+SCIP
y=x

0 250 500 750 1000 1250 1500 1750
OLLLP Time (s)

0

250

500

750

1000

1250

1500

1750

M
ax

HS
 T

im
e

(s
)

Time to Optimality: OLLLP vs MaxHS
y=x

Figure 2 Scatter plots comparing OL3P against the other three solvers. Dots over the y = x line
indicate that OL3P was faster.

8 Guillaume Claus, Hadrien Cambazard, and Vincent Jost. Arc-consistency and linear547

programming duality: an analysis of reduced cost based filtering, 2022. URL: https:548

//arxiv.org/abs/2207.10325, arXiv:2207.10325, doi:10.48550/arxiv.2207.10325.549

9 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT550

instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming551

- CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.552

Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225–239. Springer,553

2011. doi:10.1007/978-3-642-23786-7_19.554

10 Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In555

Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability556

Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, July 8-12, 2013.557

Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166–181. Springer,558

2013. doi:10.1007/978-3-642-39071-5_13.559

11 Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.560

In Christian Schulte, editor, Principles and Practice of Constraint Programming - 19th561

International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,562

volume 8124 of Lecture Notes in Computer Science, pages 247–262. Springer, 2013. doi:563

10.1007/978-3-642-40627-0_21.564

https://arxiv.org/abs/2207.10325
https://arxiv.org/abs/2207.10325
https://arxiv.org/abs/2207.10325
https://arxiv.org/abs/2207.10325
https://doi.org/10.48550/arxiv.2207.10325
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21

George Katsirelos 28:17

12 Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT. J. Satisf.565

Boolean Model. Comput., 2(1-4):1–26, 2006. doi:10.3233/sat190014.566

13 Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering. In567

Joxan Jaffar, editor, Principles and Practice of Constraint Programming - CP’99, 5th568

International Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings,569

volume 1713 of Lecture Notes in Computer Science, pages 189–203. Springer, 1999. doi:570

10.1007/978-3-540-48085-3_14.571

14 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin572

Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing - SAT573

2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,574

volume 4121 of Lecture Notes in Computer Science, pages 252–265. Springer, 2006. doi:575

10.1007/11814948_25.576

15 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver.577

J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019. doi:10.3233/SAT190116.578

16 Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo. Unifying SAT-based approaches579

to maximum satisfiability solving. Journal of Artificial Intelligence Research, 2024. doi:580

10.1613/jair.1.15986.581

17 George Katsirelos. An Analysis of Core-Guided Maximum Satisfiability Solvers Using Linear582

Programming. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International Confer-583

ence on Theory and Applications of Satisfiability Testing (SAT 2023), volume 271 of Leibniz584

International Proceedings in Informatics (LIPIcs), pages 12:1–12:19, Dagstuhl, Germany, 2023.585

Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/586

document/10.4230/LIPIcs.SAT.2023.12, doi:10.4230/LIPIcs.SAT.2023.12.587

18 Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Clause redundancy588

and preprocessing in maximum satisfiability. In Serge Gaspers and Toby Walsh, editors,589

Proceedings of the 20th International Conference on Theory and Applications of Satisfiability590

Testing, (SAT ’17), volume 10491 of Lecture Notes in Computer Science, pages 449–456.591

Springer, 2017. doi:10.1007/978-3-031-10769-6_6.592

19 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided maxsat with soft593

cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint594

Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.595

Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,596

2014. doi:10.1007/978-3-319-10428-7_41.597

20 António Morgado, Alexey Ignatiev, and João Marques-Silva. MSCG: robust core-guided maxsat598

solving. J. Satisf. Boolean Model. Comput., 9(1):129–134, 2014. doi:10.3233/sat190105.599

21 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided maxsat600

resolution. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,601

July 27 -31, 2014, Québec City, Québec, Canada., pages 2717–2723, 2014. URL: http://www.602

aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513, doi:10.1609/aaai.v28i1.9124.603

22 Nina Narodytska and Nikolaj S. Bjørner. Analysis of core-guided maxsat using cores and604

correction sets. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference605

on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,606

volume 236 of LIPIcs, pages 26:1–26:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,607

2022. doi:10.4230/LIPIcs.SAT.2022.26.608

23 Shiwei Pan, Yiyuan Wang, Shaowei Cai, Jiangman Li, Wenbo Zhu, and Minghao Yin.609

CASHWMaxSAT-DisjCad: Solver description. Technical report, Department of Computer610

Science, University of Helsinki, Helsinki, 2024. URL: http://hdl.handle.net/10138/584878.611

SAT 2025

https://doi.org/10.3233/sat190014
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25
https://doi.org/10.3233/SAT190116
https://doi.org/10.1613/jair.1.15986
https://doi.org/10.1613/jair.1.15986
https://doi.org/10.1613/jair.1.15986
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.12
https://doi.org/10.4230/LIPIcs.SAT.2023.12
https://doi.org/10.1007/978-3-031-10769-6_6
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.3233/sat190105
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
https://doi.org/10.1609/aaai.v28i1.9124
https://doi.org/10.4230/LIPIcs.SAT.2022.26
http://hdl.handle.net/10138/584878

	1 Introduction
	2 Background
	2.1 OLL
	2.2 Linear programming

	3 OL3P
	3.1 Seeding the LP
	3.2 Combining with implicit hitting set
	3.3 Reduced cost fixing
	3.4 Stratification

	4 Experimental evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 LP overhead

	5 Conclusion

