
Learning Polynomials over GF(2) in a SAT Solver
(Poster Presentation)

George Katsirelos1 and Laurent Simon2

1 INRA, Toulouse, email: george.katsirelos@toulouse.inra.fr
2 LRI, Univ Paris 11, email: simon@lri.fr

1 Introduction

One potential direction for improving the performance of SAT solvers is by using a
stronger underlying proof system, e.g., [1]. We propose a step in improving the learning
architecture of SAT solvers and describe a learning scheme in the polynomial calculus
with resolution (PCR), a proof system that generalizes both resolution and Gaussian
elimination. The scheme fits the general structure of CDCL solvers, so many of the
other techniques of CDCL solvers should be reusable.

The PCR proof system was introduced in [2]. In it, lines of a proof are polynomials,
which are derived by summing two previous polynomials or multiplying a previous
polynomial by a variable. The system also includes the axioms x2−x = 0, ¬x2−¬x =
0 and x + ¬x = 1 for all variables x. In our approach, we use only polynomials over
GF (2). In this system, a clause (a∨b∨¬c) is expressed as the polynomial ¬a¬bc = 0.
A xor-clause (a⊕b⊕¬c) is also naturally expressed, as the polynomial a+b+¬c = 0.
However, neither a clause nor a xor clause can capture a general polynomial such as
xy + zw + pq + 1 = 0. Note that the variables ¬x are not necessary, as they can be
replaced by (1 + x) but using them can drastically reduce the number of monomials.
When written as a sum of monomials, a global order on variables allows a canonical
representation, unique for all equal polynomials.

There is significant previous work that addresses the efficient integration of XOR
(or equivalence) reasoning techniques in SAT solvers, e.g. [3, 4]. However, in these
approaches, interaction between the CNF and XOR subproblems is limited to passing
unit clauses from the CNF part to the XOR part and implied clauses from the XOR part
to the CNF part.

2 Structure of the solver

The structure and main loop of the proposed solver is identical to that of CDCL algo-
rithms (not recalled here). However, the basic constraint stored in this scheme is a poly-
nomial. Therefore, the operations we need to specify are propagating the implications of
polynomials as we make decisions, and learning new polynomials when we encounter
conflicts. The natural way to propagate polynomials is to decompose it into a set of
clauses and one xor-clause. c+

∑k
i=1 mi = 0 where c ∈ {0, 1} and mi =

∏d
j=1 xij can

be decomposed with one new variable ymi
for each term mi by the clauses that encode



ymi
⇐⇒

∧d
j=1 xij and the xor-clause c+

∑k
i=1 ymi

= 0. Unfortunately, unit propaga-
tion on this decomposition is not complete. Consider the polynomial ad+ bd+ 1 = 0.
Unit propagation on the corresponding CNF x ⇐⇒ a ∧ d, y ⇐⇒ b ∧ d, x ⊕ y
does nothing, but all solutions have d set to true. We can improve this decomposition
by factoring common subexpressions, but propagation remains incomplete. However,
achieving complete propagation is too expensive and unnecessary.

In order to perform conflict analysis, we define a polynomial resolution step:

yp1 + p2
yq1 + q2{

p1q2 + p2q1 if p1 6= q1
p2 + q2 if p1 = q1

This allows us to use polynomial resolution in much the same way as resolution:
we keep track of the polynomial that forced each literal. On conflict, we iteratively
resolve away the deepest variable until we get a polynomial that satisfies a stopping
condition, such as having a single variable at the decision level. However, there are cases
where polynomial resolution is less well behaved than resolution. First, during conflict
analysis we may get a polynomial which contains no variable from the last decision
level. Second, even if there exists a 1-UIP polynomial, it is not necessarily asserting.
Third, a polynomial may contain variables which are assigned but which do not affect
the satisfiability of that polynomial under the current assignment. Resolving on these
variables may result in a tautology, so these variables have to be ignored. Additionally,
the size of polynomials may grow quadratically with every polynomial resolution step.
To keep their size in check, we propose several simplification procedures that can reduce
their size, as well as a weakening procedure that, given a polynomial p gives a smaller
and weaker polynomial p′ such that p′ = 1 =⇒ p = 1 and p = 0 =⇒ p′ = 0.

In terms of its theoretical power, this solver is not any more powerful than a CDCL
solver if the input is given in CNF and therefore also strictly less powerful than the
unrestricted polynomial calculus. Thus, we apply a preprocessing step in which we
detect XOR clauses and AND gates to extract implied polynomials, as in [5]. Given
this preprocessing step, the solver is strictly more powerful than CDCL, as it clearly
p-simulates resolution and additionally p-simulates Gaussian elimination but also more
powerful than SMT with XOR reasoning [4].

References
1. Dixon, H.E., Ginsberg, M.L.: Inference methods for a pseudo-boolean satisfiability solver. In:

AAAI 2002. (2002) 635–640
2. Alekhnovich, M., Ben-Sasson, E., Razborov, A.A., Wigderson, A.: Space complexity in

propositional calculus. SIAM J. Comput 31(4) (2002) 1184–1211
3. Soos, M., Nohl, K., Castelluccia, C.: Extending sat solvers to cryptographic problems. In:

SAT 2009. (2009) 244–257
4. Laitinen, T., Junttila, T., Niemel, I.: Extending clause learning DPLL with parity reasoning.

In: ECAI 2010. (2010) 21–26
5. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting structural knowl-

edge from cnf formulas. In: Principles and Practice of Constraint Programming - CP 2002, 8th
International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002. (2002) 185–199


