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Abstract

Recent attempts to create versions of Satisfiability (SAT)
solvers that exploit parallel hardware and information shar-
ing have met with limited success. In fact, the most suc-
cessful parallel solvers in recent competitions were based on
portfolio approaches with little to no exchange of informa-
tion between processors. This experience contradicts the ap-
parent parallelizability of exploring a combinatorial search
space. We present evidence that this discrepancy can be ex-
plained by studying SAT solvers through a proof complexity
lens, as resolution refutation engines. Starting with the obser-
vation that a recently studied measure of resolution proofs,
namely depth, provides a (weak) upper bound to the best
possible speedup achievable by such solvers, we empirically
show the existence of bottlenecks to parallelizability that res-
olution proofs typically generated by SAT solvers exhibit.
Further, we propose a new measure of parallelizability based
on the best-case makespan of an offline resource constrained
scheduling problem. This measure explicitly accounts for a
bounded number of parallel processors and appears to em-
pirically correlate with parallel speedups observed in prac-
tice. Our findings suggest that efficient parallelization of SAT
solvers is not simply a matter of designing the right clause
sharing heuristics; even in the best case, it can be — and in-
deed is — hindered by the structure of the resolution proofs
current SAT solvers typically produce.

Introduction
The trend in hardware design has lately been to move away
from improving single thread performance and instead to-
wards increasing parallelism. In order for the combinatorial
reasoning and optimization community to fully exploit the
capabilities of modern hardware, the algorithms we develop
must be efficiently parallelizable.

In propositional satisfiability or SAT, the most commonly
used sequential algorithms (“solvers”) in application do-
mains are based on a set of techniques collectively referred
to as Conflict Driven Clause Learning (CDCL). This entails
resolution-based clause learning, aggressive restarting, ac-
tivity based branching heuristics, and efficient data struc-
tures for storing and propagating clauses. These solvers
perform very well sequentially. Their performance has
also been theoretically analyzed using tools from the field
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of proof complexity (Cook and Reckhow 1979), specifi-
cally using proof systems based on the resolution principle
(Robinson 1965). While it had been long understood that
the operation of CDCL solvers can be viewed as generat-
ing resolution refutations, a series of papers (Beame, Kautz,
and Sabharwal 2004; Buss, Hoffmann, and Johannsen 2008;
Hertel et al. 2008; Pipatsrisawat and Darwiche 2011) ana-
lyzed the connection more deeply and found, for instance,
that given the freedom to restart often enough, these solvers
are in fact exactly as powerful as general resolution.

Our work is motivated by the fact that effectively paral-
lelizing CDCL SAT solvers has been found over the years to
be an extremely difficult task, as evidenced by a recent Chal-
lenge Paper on this topic (Hamadi and Wintersteiger 2012).
There have undeniably been many advances in parallel SAT
solving, particularly in the area of clause sharing heuristics.
Yet the net efficiency remains rather disappointing. For ex-
ample, in SAT Competition 2011 (Järvisalo, Le Berre, and
Roussel 2011), the most recent such event with a special
track for 32-core solvers, the average speedup achieved by
top performers such as CRYPTOMINISAT-MT (Soos 2012)
and PLINGELING (Biere 2012) was merely a factor of about
3. With modern day hardware providing access to 10,000
and even 100,000 cores, the challenge of scale becomes
even greater. As further evidence, the winners in the reg-
ular parallel track of the past two SAT Competitions, PPFO-
LIO (Roussel 2012) and PFOLIOUZK (Wotzlaw et al. 2012),
were portfolio-based solvers that simply launch multiple in-
dividual (mainly CDCL) solvers with little to no communi-
cation between them. The derivation of the underlying res-
olution refutation itself is not significantly parallelized. If
this latter aspect is an obstacle to effective parallelization (as
we show), non-information sharing portfolios cannot help us
scale well to even a few dozen cores.

In this paper, we initiate a new kind of study that explores
how the proof system underlying state-of-the-art SAT solvers
affects the degree to which one may expect parallelization —
using current methods — to succeed in practice. As the SAT
and larger CSP and AI communities explore various ways to
address the challenge of parallelizability such as new clause
sharing heuristics, decompositions, speeding up unit propa-
gation, etc., our goal is to provide a novel perspective that
we hope will shed light into the current state of affairs and
spark a new set of ideas to tackle the problem.



Preview of Results
At a high level, we find that the resolution proof system it-
self poses barriers to parallelizability. Our theoretical study
begins with an exploration of the depth of resolution refu-
tations, which captures the longest chain of dependent res-
olution steps that must be performed starting from input
clauses to the empty clause. Since this is a chain of depen-
dencies, the inverse of depth provides a first upper bound
on the speedup achievable in deriving this refutation even
with “infinite” processors. To make this bound relevant to
CDCL solvers, we employ a notion we call conflict resolu-
tion depth. Our experiments suggest that proofs of unsat-
isfiability of instances with large conflict resolution depth
parallelize poorly.

The bound resulting from the notion of depth is, however,
weak, in part because depth does not account for the avail-
ability of only a bounded number k of processors. There-
fore, we propose a refined measure based on recasting the
derivation of a proof as resource constrained scheduling
with precedence constraints. The resulting refined measure,
namely the “best case” schedule makespan, converges to
proof depth as k increases. For small k, however, it cor-
relates much better with the speedup observed in practice.

Our first empirical finding is that the “shape” or struc-
ture of refutations produced by state-of-the-art SAT solvers
contains surprisingly narrow bottlenecks (Figure 1) that in-
tuitively impose sequentiality, thus hindering parallelization.
Further, we find that these sequential refutations, at least for
“industrial” instances, are often indeed not parallelizable be-
yond a few dozen processors — even in the best case of “of-
fline” scheduling (Figures 3(a) and 3(b)).

Why should the degree of parallelizability of sequential
proofs be of interest? To address this, we provide the follow-
ing somewhat surprising empirical evidence (Figure 4): The
speedup observed in practice on an unsatisfiable instance I
when using current methods to parallelize a CDCL solver S
to k processors correlates well with the degree to which the
sequential refutation of I found by S can be parallelized
by scheduling it on k processors, (which, in light of the
above findings, is often very limited). In other words, the
makespan of a k-processor schedule of a sequential proof of
I provides insight into how parallelizable S will be on I .

We remark that while our empirical results are for unsat-
isfiable instances, time complexity conclusions drawn from
the analysis of unsatisfiability proofs do often transfer to sat-
isfiable instances as well (Achlioptas, Beame, and Molloy
2001; 2004) because finding a solution often involves first
proving unsatisfiability of many parts of the search space.
Further, speedups on unsatisfiable instances are more con-
sistent and predictable from execution to execution, which
makes empirical results more robust.

In summary, our findings suggest that building an effec-
tive parallel CDCL solver may be harder than previously
thought. The efficiency of such solvers is hindered by the
structure of the proofs they produce. Overcoming this bar-
rier may require fundamental changes to the CDCL algo-
rithm that go beyond the emphasis often placed on which
clauses to share, how to decompose, or how to speed up unit
propagation (Hamadi and Wintersteiger 2012).

Background
The propositional satisfiability problem (SAT) is to deter-
mine, for a given propositional formula F , whether there
exists an assignment to its variables that satisfies it. A for-
mula in Conjunctive Normal Form (CNF) is expressed as a
conjunction of disjunctions of literals. Each disjunction is
called a clause. We often refer to a clause as a set of literals
and to a CNF formula as a set of clauses.

Resolution (Robinson 1965) is a sound and complete sys-
tem for reasoning about CNF formulas which consists of the
single rule that (A ∨ x) ∧ (B ∨ x) ` A ∨ B, where A and
B are disjunctions of literals. We call A ∨ B the resolvent
of A ∨ x and B ∨ x. A CNF formula F is unsatisfiable
if and only if the empty clause (2) can be derived using
a sequence of resolution steps starting with the clauses of
F . More formally, a resolution refutation Γr of F is a se-
quence of clauses C1, . . . , Cm such that Cm = 2 and for
each i ∈ [1,m], Ci ∈ F or Ci is the resolvent of two clauses
Cj , Ck, j, k ∈ [1, i − 1]. Since we study no other systems
here, we may omit the word “resolution” and call this a refu-
tation. We say that the length of Γr is m. We denote the
shortest possible refutation of F by Γmin

r (F ).
Given a refutation Γr of a CNF formula F , we can define

a directed acyclic graph (DAG) called the resolution DAG
as follows. There exists a vertex for each unique clause in
Γr. If Ci is the resolvent of Cj and Ck, there exist edges
(Cj , Ci) and (Ck, Ci).

Unit propagation is the following simplification process
for CNF formulas. If there exists in F a clause C of size 1
(called a unit clause), say {x}, we remove from F all clauses
that contain x and remove x from all clauses that contain it.
Since this may generate new unit clauses, we repeat this until
fixpoint or until 2 ∈ F .

Most of the current successful SAT solvers are based on
the Conflict Driven Clause Learning (CDCL) framework;
we refer the reader to Biere et al. (2009) for an overview.
CDCL solvers alternate branching, i.e., tentatively adding a
unit clause to the formula, and performing unit propagation
until, after some branching choices, unit propagation gen-
erates the empty clause. At that point, a conflict analysis
procedure uses the trace of unit propagation to extract a se-
ries of resolution steps using the clauses of F and derive a
new clause L. The solver then adds L to F and repeats the
procedure, either starting with a fresh sequence of branching
decisions (a restart), or by reusing a prefix of the current se-
quence branching decisions such that unit propagation does
not derive the empty clause (a backjump). The search ter-
minates when the empty clause is derived, in which case
F is unsatisfiable, or until the sequence of branching de-
cisions and unit propagation derive the empty formula, in
which case it can extract a solution. We omit discussion of
other aspects of CDCL solvers, such as data structures, pre-
processing and choice of branching and other heuristics.

Conflict Resolution Depth
To motivate the study of resolution depth, we present the
following experiment. We modified the CDCL SAT solver
GLUCOSE 2.1 (Audemard and Simon 2009) to produce a file



containing a refutation Γ (termed a CDCL refutation) of the
input instance F , assuming F is unsatisfiable. The format
of this file is such that for each derived clause C (including
the empty clause), we can reconstruct all resolution steps
involved in the conflict analysis resulting in the derivation of
C, including minimization. This associates with C all input
or previously derived clauses needed for deriving C. We
then remove any clauses that cannot reach the empty clause.
All remaining clauses form the CDCL refutation Γ and are
annotated with a conflict resolution depth attribute, defined
as follows:

Definition 1. Let F be an unsatisfiable CNF formula and
Γ a CDCL refutation of F . For every clause C ∈ Γ, the
conflict resolution depth of C, denoted dconf (C,Γ), is:

1. 0 if C ∈ F , i.e., C is an input clause, and
2. 1 + maxk

i=1{dconf (Ci,Γ)} if C is derived in Γ by resolv-
ing clauses C1, . . . , Ck.

The conflict resolution depth of the refutation Γ, denoted
dconf (Γ), is the maximum of dconf (C,Γ) over C in Γ. The
conflict resolution depth of F itself, denoted dconf (F ), is the
minimum of dconf (Γ) over all CDCL refutations Γ of F .

In other words, we implicitly construct a directed acyclic
proof graph Gconf (Γ) from Γ with one vertex for each
clause C and incoming edges from C1, . . . , Ck to C.
Then, dconf (C,Γ) equals the length of the longest path in
Gconf (Γ) from an input clause to C. We call Gconf (Γ) the
conflict resolution DAG, in contrast to the resolution DAG.

We use |Γ| to denote the size of the CDCL refutation mea-
sured as the number of derived clauses in Γ. In the rest of
this paper, we will use |Γ| as a proxy for the amount of com-
putational resources consumed taken by a sequential SAT
solver when deriving Γ, and will refer to it as the number of
“steps” taken by the solver. For a parallel SAT solver, the
resource consumption will be appropriately adjusted to take
into account the derivation of multiple clauses in each “par-
allel” step. The step speedup of a solver S1 compared to S2

will then be the ratio of the number of sequential or parallel
steps, as appropriate, needed by the two solvers. We will use
the term speedup (or parallel speedup) to denote the ratio of
the actual (wall clock) runtimes of the two solvers.

Bottlenecks in Typical CDCL Proofs
Given this setting, we consider a “proof shape” plot of the
number of clauses discovered at each conflict depth. Con-
flict depth is plotted on the X axis, with 0 on the left, and the
number of clauses at that conflict depth on the Y axis. The
lone clause at maximum conflict depth is the empty clause.

Figure 1 shows a typical proof shape, plotted here for
cmu-bmc-longmult15, an unsatisfiable model checking
instance solved in a few seconds. Plots for other instances
are not substantially different. We observe in this plot the ex-
istence of deep valleys (i.e., levels such that very few clauses
are annotated with it) followed immediately by a peak (i.e.,
a level with many clauses). Although this may not be ap-
parent from the plot, the size of most of the deep valleys is
1. This means that there exists a single clause, of small size
in many cases, that is derived at that conflict depth. These
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Figure 1: Number of clauses derived at each depth of a typ-
ical CDCL proof

deep valleys imply a bottleneck in the proof : all clauses dis-
covered at a conflict depth greater than the conflict depth of
the valley depend on that single (key) clause. This has an
effect on the parallel speedup we could achieve in deriving
this particular refutation: until the clause at the first valley is
discovered, no processor can progress to a deeper level; the
same holds for the second valley, and so on. It may thus be
important to detect these key clauses for sharing. Moreover,
if it seems that we could detect these clauses by their activity
peak in conflict analysis, a good parallel solver would also
join the efforts of its threads to produce as soon as possible
these key clauses, in the best possible order. Today’s parallel
SAT solvers do not consider such aspects.

Depth Based Limits to Parallelization
We can formalize the intuition underlying this plot by study-
ing the notion of resolution depth of a formula, defined as
the minimum over all resolution refutations of the formula
of the length of the longest path from an input clause to
the empty clause in the corresponding resolution refutation
DAG. Formally, given a CNF formula F , a resolution refu-
tation (rather than a CDCL refutation) Γ of it, and a clause
C ∈ Γ, we can define resolution depths dres(C,Γ), dres(Γ),
and dres(F ) in a manner analogous to Definition 1. Note
that resolution depth is not to be confused with conflict res-
olution depth, which is measured on the conflict resolution
DAGs generated by CDCL solvers. The two DAGs are,
however, related, as the conflict resolution graph simply col-
lapses sequences of unit resolution steps into one step. In
particular:

Observation 1. For any formula F over n variables,
dconf (F ) ≤ dres(F ) ≤ n× dconf (F ).

Given that unit propagation is an integral part of clause
learning SAT solvers, the measure we are really interested
in is conflict resolution depth. Resolution depth serves only
as a proxy for it.

The depth of a resolution proof provides a hard upper
bound on the step speedup we can achieve by parallelizing
the derivation of that refutation using resolution. Indeed,
even with an unbounded number of parallel processors and



no communication cost, in the first step we can at best derive
all clauses at depth 1. Each clause at depth k has at least one
ancestor at level k−1 and can therefore not be derived earlier
than step k. As we will discuss in the next section, Urquhart
(2011) proved that there exist families of instances Fn over
n variables such that dres(Fn) = Ω(n/ log n), i.e., every
resolution proof of Fn must have depth at least roughly lin-
ear in n. This already implies a lower bound of Ω(n/ log n)
on the number of parallel steps needed by any algorithm that
performs only one resolution inference per processor in each
time step, even with an unbounded number of processors.

This suggests that a theoretical study of barriers to par-
allelizability is of interest. Unfortunately, instances in the
family {Fn} proposed by Urquhart are decidable by unit
propagation and thus their conflict resolution depth, the no-
tion more applicable to CDCL SAT solvers, is only one. The
lower bound argument can, however, be made more relevant
by extending it to conflict resolution depth:
Proposition 1. Let F be a CNF formula and Sk be a paral-
lel CDCL SAT solver using k processors. Let R denote the
set of all CDCL refutations of F . Then, for any k,

1. Sk needs at least dconf (F ) parallel steps to solve F .
2. Let Γ be a CDCL refutation of F produced by a solver S1

using 1 processor. Compared to S1, Sk cannot achieve a
step speedup larger than |Γ|/dconf (F ) when deriving Γ.

3. Sk cannot achieve a step speedup of more than
minΓ∈R |Γ|/dconf (F ) compared to an optimal sequential
CDCL solver for F .

Instances with Large Conflict Resolution Depth
Given a DAG G, the pebbling game on G is a well-studied
single-player game defined as follows. At each step, the
player can place a pebble on a source vertex (referred to as
“pebbling” the vertex), remove a pebble from any vertex, or,
if all ancestors of a vertex v are pebbled, either place a peb-
ble on v or move a pebble from one of v’s predecessors to
v. The minimum number of pebbles needed to pebble one
of the sinks of G is p(G), the pebbling number of G. (Note
that the number of vertices of G is a trivial upper bound on
p(G).) It suffices for our purposes to assume a fanin of two
and a single sink.

Kozen (1977) introduced the corresponding pebbling for-
mulas Peb(G) with one propositional variable for every ver-
tex capturing whether or not that vertex is pebbled. The
clauses of Peb(G) are: vs for every source vertex s, ¬vt for
the sink vertex t, and (¬v1∨¬v2∨v) for every vertex v with
predecessors v1 and v2. For these formulas, Urquhart (2011)
recently showed that resolution depth is tightly related to the
pebbling number: dres(Peb(G)) = p(G) − 2. Further, he
gave a particular family of instances derived from pebbling
games on graphs Gn with n vertices and pebbling number
(and hence resolution depth) as high as Ω(n/ log n).

Unfortunately, Peb(Gn) is solvable by unit propagation
and therefore dconf (Peb(Gn)) = 1. To avoid this behav-
ior, we use a construction introduced by Ben-Sasson and
Nordström (2008). They define XOR-pebbling formulas
PebXOR(G) in which there exist two variables v and v′ for
each vertex v and the axioms are changed to the following:

vs ⊕ v′s = 0 for every source vertex vs, vt ⊕ v′t = 1 for the
sink vt, and (v1⊕v′1 = 0)∧(v2⊕v′2 = 0)→ (v⊕v′ = 0) for
every vertex v with predecessors v1 and v2. These axioms
can be encoded with clauses of size at most 6. It is easy
to show that Urquhart’s result generalizes to XOR-pebbling
formulas. Further, it can be shown that unit propagation is
ineffective on XOR-pebbling formulas. Formally:

Theorem 1. For any DAG G, dres(PebXOR(G)) =
2p(G)− 4 and dconf (PebXOR(G)) = 2p(G)− 4.

This allows us to use families of graphs with a known peb-
bling number to construct instances with a specific depth,
which are not trivially solvable, and can in fact be challeng-
ing for CDCL solvers (Järvisalo et al. 2012). The instances
are, however, easy for variable elimination.

Conflict Resolution Depth and Parallelizability: An
Empirical Evaluation
In order to evaluate whether resolution depth or conflict res-
olution depth is a robust measure for capturing the degree of
parallelizability of an instance by a CDCL SAT solver, we
report the results of two experiments. All experiments were
conducted on AMD Opteron 6134 machines with 32 cores,
64 GB RAM, and 512 KB L2 cache, running at 2.3 GHz.

In both experiments, we measure the speedup or degree
of parallelizability observed in practice by comparing the
(wall-clock) time needed by the sequential solver GLUCOSE
2.1 compared to our implementation of a parallel version of
it, which we call GLUSATX10 (k) when using k processors,
built using the SATX10 parallelization framework (Bloom et
al. 2012). When launched, GLUSATX10 (k) starts k copies
of GLUCOSE (on the same machine, for the purposes of this
paper) with different configurations such as random seed, a
small fraction of random branching decisions, LBD queue
length, etc. These sequential copies share learnt clauses
of up to a maximum length, which is dynamically adjusted
such that roughly 5% of the clauses learned by each solver
are shared with others. Other default features of SATX10,
such as clause buffering, are kept unchanged.

In the first experiment, we consider instances with a
known lower bound on resolution depth, namely, a sub-
set of instance families recently used to study the notion
of “space” of resolution proofs (Järvisalo et al. 2012). In
particular, we use XOR-pebbling instances on families of
graphs with known pebbling number. We expect that as the
ratio Γmin

r (F )/dres(F ) increases within a family of graphs,
so does the speedup going from GLUCOSE to GLUSATX10.
Unfortunately, this hypothesis was not confirmed (data omit-
ted for lack of space). However, CDCL solvers perform
poorly on these instances, because the pebbling number of
a graph is also a lower bound for resolution space, which
correlates with difficulty (Järvisalo et al. 2012). Hence, it is
possible that this distorts our results.

In the second experiment, we consider all 300 unsatisfi-
able instances from SAT Challenge 2012 (Balint et al. 2012)
to the subset of 164 instances for which CDCL proof files
can be generated using our modified variant of GLUCOSE
within 5,000 seconds. From those instances we remove an-
other 10 instances since they can be solved in less than 5 sec-



onds by GLUCOSE. For the remaining 154 instances, there
is no known (non-trivial) theoretical lower bound on the res-
olution depth and computing it is computationally imprac-
tical as it involves effectively exploring all possible proofs.
Instead, for each instance F , we compute a CDCL refuta-
tion ΓF using (sequential) GLUCOSE and record dconf (ΓF ).
This is not necessarily close to the desired minimum depth,
dconf (F ), across all possible CDCL refutations. However,
we present (indirect) evidence in the next section that proofs
generated by GLUCOSE are in fact similar to the proofs gen-
erated by GLUSATX10, and are hence relevant to our cur-
rent analysis.

For this experiment, we measured how dconf (ΓF ) corre-
lates with the speedup observed on F in practice when going
from GLUCOSE to GLUSATX10 (8). As one might expect
by this point, there is weak correlation between the two.
More precisely, the Pearson correlation coefficient is 0.25,
which improves to 0.35 after removing one outlier.1 While
this (weak) correlation exists, we also find that the ideal
speedup predicted solely by depth, namely |Γ|/dconf (ΓF )
for a refutation Γ, is often too optimistic (in the 100s, if not
in the 1000s).

This suggests that conflict resolution depth is a relevant
measure but overall too crude to estimate the degree of par-
allelizability of resolution refutations in practice.

Proof Schedules: A More Refined Measure
Two possibilities may account for the weak correlation be-
tween parallelizability observed in practice and conflict res-
olution depth. First, it could be that the CDCL refutation
produced by one processor is not “similar” enough to the
one generated jointly by the k processors. We believe this
is not the case, especially for solvers such as GLUSATX10,
PLINGELING, and CRYPTOMINISAT-MT which are strongly
guided by the same heuristic search strategies that their se-
quential counterparts use. A second possibility is that the
barrier to parallelizability imposed by depth, as outlined in
Proposition 1, captures the case where there is no limit on
the number of available processors2 but does not provide any
useful information in the case of a few processors. With this
as our conjecture, we explore a measure of parallelizability
that explicitly takes into account the number of processors.

Definition 2. Let Gconf = (V,E) be a conflict resolu-
tion DAG for a CDCL proof Γ of a CNF formula F . A k-
processor schedule s of Gconf is a mapping from V (equiv-
alently, from clauses in Γ) to M = {0, 1, . . . ,m} such that:

1. for all i ∈M , 1 ≤ |{v ∈ V | s(v) = i}| ≤ k;
2. s(v) = 0 iff v is a leaf of Gconf , i.e., v is an input clause;
3. if s(v) = i then for all predecessors u of v in Gconf ,

s(u) ≤ i− 1.

The makespan of this schedule, denoted f(s), is m.

Definition 3. Let Γ be a CDCL refutation. The k-processor
refutation makespan of Γ, denoted f(Γ, k), is mins f(s)

1Detailed data is available from the authors.
2Since there are only Θ(3n) possible clauses over n variables,

Proposition 1 also applies with k = Θ(3n) processors.
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where the minimum is over all k-processor schedules s of
Γ. Further, the k-processor instance makespan, denoted
f(F, k), is minΓ f(Γ, k) where the minimum is over all
CDCL refutations Γ of F .

When it is clear from the context, we will, with slight
abuse of notation, use the term makespan to also denote refu-
tation makespan and instance makespan. The makespan sat-
isfies the following properties:

Proposition 2. Let Γ be a CDCL refutation. Then,

1. for any 1-processor schedule s of Γ, f(s) = |Γ|, i.e., 1-
processor makespan simply equals the refutation size;

2. for any schedule s of Γ, f(s) ≥ dconf (Γ);
3. if k ≤ k′, then f(Γ, k) ≥ f(Γ, k′); and
4. as k grows to infinity, f(Γ, k) converges to dconf (Γ).

Figure 2 shows an example of the convergence property
on an actual CDCL refutation generated by GLUCOSE on an
AI planning instance from the SOKOBAN family. The refu-
tation has roughly 100,000 clauses. A close look at the plot
indicates near-linear decrease in schedule makespan (i.e.,
near-optimal speedup) as k, the number of processors, is in-
creased till around 64, after which the curve starts to flatten
out and essentially converges to the lower bound of conflict
resolution depth after 1024 processors. This refined infor-
mation for smaller k is what we hope to exploit.

The properties in Proposition 2 naturally generalize to in-
stance makespan as well: for any schedule s of any refu-
tation of F , f(s) ≥ dconf (F ); and as k grows to infinity,
f(F, k) converges to dconf (F ). Every k-processor schedule
essentially describes one way of deriving the CDCL refuta-
tion using k processors, by specifying for each step t pre-
cisely up to k clauses that should be derived in parallel in
step k. This naturally leads to a notion of speedup:

Definition 4. Let Γ be a CDCL refutation. The schedule
speedup on Γ when using k processors compared to using
k′ processors is f(Γ, k′)/f(Γ, k).

We are now in a position to employ Proposition 2 and
derive a result that generalizes the conflict resolution depth
barriers delineated in Proposition 1.
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Figure 3: Efficiency and schedule speedup of k = 2, 8, 32, 128, 1024 processor schedules on refutations generated by GLUCOSE

Theorem 2. Let F be a CNF formula and Sk be a parallel
CDCL SAT solver using k processors. Let R denote the set
of all CDCL refutations of F . Then, for any k,

1. Sk needs at least f(F, k) parallel steps to solve F ;
this bound decreases as k increases and converges to
dconf (F ) as k →∞;

2. Let Γ be a CDCL refutation of F produced by a solver
S1 using 1 processor. Compared to S1, Sk cannot
achieve a step speedup larger than |Γ|/f(Γ, k) when de-
riving Γ; this bound increases with k and converges to
|Γ|/dconf (F ) as k →∞; and

3. Sk cannot achieve a step speedup of more than
minΓ∈R |Γ|/minΓ′∈R f(Γ′, k) compared to an optimal
sequential CDCL solver for F ; this bound increases with
k and converges to minΓ∈R |Γ|/dconf (F ) as k →∞.
Thus, for finite, and in particular relatively small, values

of k, schedule speedup provides a finer grained characteriza-
tion of the barrier than conflict resolution depth alone. In the
rest of this section, we study the correlation between sched-
ule speedup and the typical speedups observed in practice.

Given Γ, k, and m, deciding whether f(Γ, k) is at most m
is equivalent to the classic Precedence Constrained Schedul-
ing problem which is known to be NP-complete (Garey and
Johnson 1979). Computing f(Γ, k) is thus NP-hard. In
fact, even approximating it within a factor of 4/3 is NP-hard
(Lenstra and Rinnooy Kan 1978). Fortunately, the simplest

greedy algorithm — one that essentially performs a topolog-
ical traversal of Gconf (Γ) and greedily assigns as many (up
to k) eligible vertices to each step as it can — is well-known
to provide a 2−1/k approximation. A more recent algorithm
provides a tighter approximation of 2− 7/(3k + 1) (Gangal
and Ranade 2008), but for simplicity we use the 2 − 1/k
approximation algorithm for our empirical study.

Empirical Evaluation
For our experiments, we use the same set of 154 instances
from SAT Challenge 2012 as before, along with GLUCOSE
and GLUSATX10 as our reference solvers, and the same
computational platform as mentioned earlier.

Limited Parallelizability of Sequential Refutations. For
the first experiment, for each instance F , we consider the
CDCL refutation Γ produced by GLUCOSE on F in a se-
quential run and ask how much can Γ be parallelized in the
best case when using k processors. This is captured pre-
cisely by f(Γ, k), which we compute using the 2 − 1/k
approximation algorithm.3 Given this, one can compute a
measure often used in systems studies when evaluating the

3The approximation algorithm often resulted in a perfect sched-
ule speedup compared to using 1 processor, thereby suggesting that
it often finds schedules of quality significantly better than the worst
case approximation guarantee.
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Figure 4: Correlation between Actual Speedup and Schedule Speedup. X-axis: instances sorted by schedule speedup of the
sequential GLUCOSE refutation. Y-axis: actual (wall-clock) speedup of GLUSATX10 (8) compared to GLUCOSE.

performance of parallelization techniques, namely, the effi-
ciency of parallelization. Efficiency captures as a percent-
age how close the use of k processors comes to achiev-
ing the ideal case speedup of a factor of k. In our con-
text, the k-processor schedule efficiency on Γ is defined as
(f(Γ, 1)/f(Γ, k)) × 100/k. 100% efficiency thus indicates
perfect parallelization.

Figure 3(a) shows the observed parallelization efficiency
for k = 2, 8, 32, 128, and 1024 processors, with one curve
for each k. The 154 instances are sorted along the X coordi-
nate in decreasing order by efficiency with 1024 processors.
We see that the efficiency of parallelization starts to decrease
significantly as k increases. The dramatic drop in efficiency
beyond 128 processors clearly shows that CDCL refutations
produced by state-of-the-art SAT solvers are often inherently
not very parallelizable beyond a few dozen processors —
even in the best case where scheduling is performed offline
(i.e., in hindsight) with full proof structure in hand.

Figure 3(b) shows another view of the same data, focused
particularly on instances towards the right hand side of Fig-
ure 3(a), whose GLUCOSE generated sequential refutation is
not very parallelizable. It highlights, for example, that refu-
tations of cryptographic instances such as gus-md5-08.cnf
can only be parallelized 100x irrespective of how many pro-
cessors are available. Further, to achieve this 100x speedup
on this proof, it is not sufficient to use just 128 processors;
one must go beyond 1024 processors.

Schedule Speedup Correlates with Parallelizability.
For this experiment, we consider the same set of 154 SAT
Challenge 2012 instances as in Figure 3(a) and measure (a)
their 1024-processor schedule speedup and (b) the actual
speedup observed when running GLUSATX10 (8) versus
GLUCOSE. The goal is to demonstrate a correlation between
these two quantities.

In Figure 4, the instances are shown sorted along the X co-
ordinate in increasing order of their schedule speedup, with
the Y coordinate showing the actual observed speedup. Not
surprisingly, there is a significant amount of variation in ac-

tual speedup across the instances, which come from a variety
of application domains. Nonetheless, as highlighted by the
smoother line showing the moving average over a window of
20 instances, there is an upward trend in the data. More pre-
cisely, the Pearson correlation coefficient between the ob-
served runtime speedup and the schedule speedup is 0.51,
which is typically categorized as “medium” to “strong” sta-
tistical correlation. This provides evidence for our conjec-
ture that the actual observed speedup (in wall-clock time)
in modern day CDCL solvers correlates with how paral-
lelizable the CDCL refutations generated by their sequential
counterparts are, which in turn is relatively well captured by
the schedule speedup measure we introduced.

Conclusions
This paper introduced a new line of study of why, despite
tremendous advances in the design of sequential CDCL
SAT solvers, researchers have faced difficulty in paralleliz-
ing them. We presented empirical evidence that it is the
structure of the resolution refutations produced by current
solvers that hinders their parallel efficiency. Portfolio ap-
proaches are unlikely to help in this context, as they do not
even attempt to parallelize the construction of the refutation.
Our study suggests that a promising way forward for de-
signing effective parallel clause learning solvers is to alter
their behavior so that they discover more parallelizable refu-
tations, even at the expense of worse single-thread perfor-
mance. More generally, it may turn out that certain reso-
lution refutations are inherently not parallelizable beyond a
certain limit, in which case our study would suggest explor-
ing solvers based on other proof systems that produce more
parallelizable refutations.
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