
Virtual Arc Consistency for Linear Constraints in
Cost Function Networks

Pierre Montalbano
LIFAT, UR 6300

Université de Tours, ANITI, INRAE
Tours, France

0000-0001-8126-892X

Simon de Givry
MIAT, UR 875

Université de Toulouse, ANITI, INRAE
Toulouse, France

0000-0002-2242-0458

George Katsirelos
MIA Paris, AgroParisTech

ANITI, INRAE
Paris, France

0000-0002-3727-6698

Abstract—In Constraint Programming, solving discrete mini-
mization problems with hard and soft constraints can be done
either using (i) soft global constraints, (ii) a reformulation
into a linear program, or (iii) a reformulation into local cost
functions. Approach (i) benefits from a vast catalog of constraints.
Each soft constraint propagator communicates with other soft
constraints only through the variable domains, resulting in weak
lower bounds. Conversely, the approach (ii) provides a global
view with strong bounds, but the size of the reformulation can
be problematic. We focus on approach (iii) in which soft arc
consistency (SAC) algorithms produce bounds of intermediate
quality. Recently, the introduction of linear constraints as local
cost functions increases their modeling expressiveness. We adapt
an existing SAC algorithm to handle linear constraints. We
show that our algorithm significantly improves the lower bounds
compared to the original algorithm on several benchmarks,
reducing solving time in some cases.

Index Terms—constraint programming, linear program, dual-
ity, soft arc consistency

I. INTRODUCTION

Graphical models provide a powerful framework for model-
ing a variety of combinatorial problems, addressing tasks that
range from satisfaction problems to probabilistic models. [1].
They employ local functions defined over ‘small’ subset of
variables to represent diverse interactions among them. For ex-
ample, to model the Constraint Satisfaction Problem (CSP) [2],
each local function is a constraint evaluating to true (satisfied)
or false (falsified). Here, we focus on Cost Function Networks
(CFNs), where each local function is a cost function; the task
of finding an assignment that minimizes the sum of all cost
functions is known as the Weighted Constraint Satisfaction
Problem (WCSP). Most methods for finding optimal solutions
rely on a branch-and-bound procedure, using either very fast
but static and memory-intensive bounds [3] or memory-light
ones [4] to compute lower bounds. Here, we focus on the latter,
known as Soft Arc Consistency (SAC) algorithms. Similar to
CSP propagation, they reason about each non-unary cost func-
tion individually. Different levels of SAC exist, each offering a
trade-off between propagation strength (lower-bound quality)
and propagation time. Striking the right balance between the
quality of derived lower bounds and the computational time
required to construct them is crucial for achieving efficiency.
Virtual Arc Consistency (VAC) [4] can derive strong lower
bounds but is expensive to enforce. The principle of VAC is

to study a CSP, denoted Bool(P), derived from a WCSP P .
For every cost function, only tuples and values with zero cost
are allowed in Bool(P). If Bool(P) is inconsistent, then the
lower bound of P is non-zero. If the inconsistency of Bool(P)
is detected by Generalized Arc Consistency (GAC), then VAC
has been designed to extract a lower bound.

CFN also benefits from the flexibility of Constraint
Programming (CP) with its ability to handle (soft)-global
constraints. However, while integrating a global constraint in
a CP solver only requires an algorithm to prune inconsistent
values, in CFN, in addition to pruning, propagators for new
constraints must also compute a lower bound. This has been
done for various global constraints, including AllDifferent,
clique, and linear inequality constraints [5]–[7].

Contributions. Motivated by VAC’s good performance and
the recent introduction of linear constraints in CFN [7],
we study how to combine these contributions. Previous ap-
proaches to handling linear constraints in CFNs tend to absorb
unary costs, which subsequent propagation can no longer
exploit. Enforcing VAC enables the identification of sequences
of cost moves involving different propagations and facilitates
communication between linear constraints. However, enforc-
ing VAC on a linear constraint requires keeping in Bool(P)
only those values that can be part of a zero-cost tuple. For
linear inequality constraints, this corresponds to solving a
problem similar to the Knapsack problem and is therefore
NP-hard. We demonstrate how reduced cost filtering [8] can
be used to detect subsets of inconsistent values. This leads
to VAC-lin, which enforces an incomplete GAC on Bool(P).
This approach is implemented in the toulbar2 WCSP solver
and tested on several benchmarks.

II. BACKGROUND

A. Weighted Constraint Satisfaction Problem

Definition 1. A Cost Function Network (CFN) P is a tuple
(X,D,C,⊤) where X = {1, . . . n} is a set of n variables,
D a list of finite domains Di ∈ D for i ∈ X . C is a set
of cost functions. Each cost function cS ∈ C is defined over
a subset of variables S called its scope (S ⊆ X). ⊤ is a
maximum cost indicating a forbidden assignment.

We denote by (i, v) the assignment of value v ∈ Di

to variable i ∈ X . The arity of a cost function is the
size of its scope. Unary (resp. binary) cost functions have
arity 1 (resp. 2). In this paper, we assume each variable has
exactly one associated unary cost function. For S ⊆ X , let
ℓ(S) = Πi∈SDi denote the Cartesian product of variable
domains in S. An assignment (or tuple) τ ∈ ℓ(S) is an
assignment of a value in the domain Di to every variable
i ∈ S. We denote by τ [i] the value assigned to i ∈ S. If
S = X , then τ defines a complete assignment; otherwise, it
is a partial assignment.

A cost function cS maps tuples τ ∈ ℓ(S) to costs cS(τ).
The cost of a complete assignment τ ∈ ℓ(X) is given by
cP (τ) =

∑
cS∈C cS(τ [S]), τ [S] being the projection of τ

on S. Without loss of generality, we assume all costs are
positive integers, bounded by ⊤, a special constant signifying
inconsistency. If cS(τ) = ⊤, then τ is inconsistent. A cost
function cS is hard if for all τ ∈ ℓ(S), cS(τ) ∈ {0,⊤},
otherwise it is soft. A CFN P that contains only hard cost
functions is a constraint network (CN). In the following,
we use the term cost function interchangeably with the term
constraint.

The Weighted Constraint Satisfaction Problem (WCSP)
asks, given a CFN P , to find a complete assignment τ mini-
mizing cP (τ). This task is NP-hard [9]. When the underlying
CFN is a CN, the problem reduces to a CSP. Throughout this
paper, WCSP refers to both the optimization task and the CFN.

Each cost function is represented either in extension or
intention. A cost function defined in extension, also known
as a table constraint, explicitly lists all the tuples and their
associated costs. This is feasible only for low-arity cost func-
tions due to memory usage that grows exponentially with arity.
A cost function given in intention is defined by a function or
a logical expression that specifies the relationship between the
variables, for example, global constraints are typically given
in intention.

We also assume the existence of an empty scope cost
function c∅ representing a constant term in the objective
function. Since no negative costs exist, c∅ serves as a global
lower bound for all assignments. It plays a key role in SAC
algorithms.

B. Soft Arc Consistency

Soft Arc Consistency (SAC) algorithms examine small
subsets of cost functions sequentially. Beyond removing the
locally inconsistent values, they compute a lower bound by
increasing c∅. To achieve this, they rely on reparametrization:
a reparameterization P ′ of a WCSP P is a WCSP with an
identical structure, i.e., the set of scopes and variables is
identical. The costs assigned by each individual cost function
may differ, but cP (τ) = cP ′(τ) for all complete assignments
τ . We say that a reparametrization is better if it has a higher
c∅. A reparametrization can be obtained through a set (or
a sequence) of local Equivalence Preserving Transformations
(EPTs). Let S1 ⊂ S2 be two scopes with corresponding cost

functions cS1 and cS2 . Procedure MoveCost describes how a
cost α moves between the corresponding cost functions.

As a matter of terminology, when α > 0, cost moves from
the higher-arity cost function cS2

to the lower-arity cS1
and the

move is called a projection, denoted project(cS1
, cS2

, τ1, α)
with τ1 ∈ ℓ(S1). When α < 0, cost moves to the higher-arity
cost function cS2 and the move is called an extension, denoted
extend(cS1

, cS2
, τ1,−α).When S1 = ∅ and |S2| = 1, with

S2 = {i}, the move is called a unary projection, denoted
unaryProject(ci, α), equivalent to MoveCost(c∅, ci, ∅, α).
Extensions are never performed from c∅, so it increases
monotonically during the algorithm and along each branch of
the search tree.

Identifying the cost moves that produce an optimal repa-
rameterization—one that maximizes the lower bound—is non-
trivial. It has been shown that any reparameterization can be
derived by a set of local cost moves [10] and that the optimal
reparameterization (with α rational) can be found from the
optimal dual solution of a linear relaxation of the WCSP [4],
whose feasible region is the local polytope.

However, solving this LP to optimality is often prohibitively
expensive because the worst-case time complexity of an exact
LP algorithm is O((mr + m2)

√
m) [11], where m is the

number of linear constraints of the linear relaxation and r
their largest arity. This poor asymptotic complexity matches
empirical observation [12]. Moreover, the structure of this LP
does not allow more efficient algorithms, as solving LPs of this
form is as hard as solving arbitrary LPs [13]. Instead, research
has focused on producing high-quality—though potentially
suboptimal—feasible dual solutions. Various algorithms have
been proposed for this, like Block-Coordinate Ascent (BCA)
algorithms developed for image analysis [10], [14]–[18] or soft
arc consistencies in constraint programming [4], [19]–[22].
Notably, the strongest algorithms from both lines of research,
such as TRWS [10] and VAC [4] converge on fixpoints with
the same properties.

Here, we focus on Soft Arc Consistency (SAC) [4] and
define several variants.

Definition 2. A WCSP P is Node Consistent (NC) [20] if for
every variable i ∈ X there exists a value a ∈ Di such that
ci(a) = 0 and for every value b ∈ Di, c∅ + ci(b) < ⊤.

In the following, we assume that the WCSP is NC before
the propagator runs.

An important SAC algorithm for this paper is Virtual Arc

Procedure MoveCost(cS1 , cS2 , τ1, α): Move α units of
cost between the tuple τ1 of scope S1 and tuples τ2
that extend τ1 in scope S2

Input: scopes S1 ⊂ S2

Input: τ1 ∈ ℓ(S1)
Input: cost α to move

1 cS1
(τ1)← cS1

(τ1) + α ;
2 foreach τ2 ∈ ℓ(S2) | τ2[S1] = τ1 do
3 cS2

(τ2)← cS2
(τ2)− α ;

4 end

Consistency (VAC) [4]. It relies on a particular CSP Bool(P)
that can be derived from a WCSP instance P . For every cost
function in P , except c∅, only the tuples and values having a
zero cost are allowed in Bool(P). Any satisfying assignment
of Bool(P) is also feasible for P and, by construction, has
cost c∅. Hence, that is an optimum assignment of P . On the
other hand, if Bool(P) is inconsistent, no such assignment
exists, and the optimum of P has a cost strictly greater than
c∅. It has been shown [4] that an inconsistency certificate
produced by arc consistency on Bool(P) can be used to derive
a reparameterization of P with increased c∅.

In the following, AC(P) denotes the arc consistent clo-
sure of a CSP P : the unique CSP obtained by removing
arc-inconsistent values from domains. An empty AC closure
implies inconsistency.

Definition 3 (Virtual Arc Consistency [4]). A WCSP P is
virtual arc consistent if the (generalized) arc consistency
closure of the CSP Bool(P) is non-empty.

Theorem 1 ([4]). Let P be a WCSP such that c∅ < ⊤. Then
there exists a sequence of EPTs which, when applied to P ,
leads to an increase in c∅ if and only if the arc consistency
closure of Bool(P) is empty.

The algorithm to enforce VAC is decomposed into 3 phases:
1) Establish (G)AC on Bool(P). If no conflict occurred,

then quit.
2) Given a conflict, perform conflict analysis1 to compute

a sequence of EPTs σ such that applying σ increases
c∅ by a cost λ.

3) Apply σ to P and go back to phase 1.
To see why step 2 is always possible, observe that arc

consistency operations in Bool(P) can themselves be viewed
as EPTs, where the cost moved is always ⊤. For example,
pruning a value (i, a) that has lost all supports on constraint
cij can be viewed as extending ⊤ from each pruned value
(j, b) to cij , which marks all supporting tuples of (i, a) in cij
as forbidden, then projecting ⊤ from cij to (i, a). By choosing
a sufficiently small λ, we can repeat those EPTs in P using λ
instead of ⊤, ensuring that no negative costs are introduced.
The purpose of step 2 is to identify a maximal value for λ.

From the above, we see that as long as Bool(P) has an
empty arc consistency closure, VAC will increase c∅.

An additional heuristic variant of VAC that we consider
here is VACθ. This uses a threshold θ when creating Boolθ(P)
and forbids only the values/tuples with a cost greater than or
equal to θ. When θ = 1, VACθ is equivalent to VAC. Clearly,
VACθ may discover only a subset of the reparameterizations
that VAC can find. But the higher θ is, the higher the costs
of P involved in conflicts discovered by GAC in Boolθ(P).
Hence, there is a chance that those lead to a higher increase
of c∅, although this cannot be guaranteed. On the other hand,
the lower θ is, the better the chance that Boolθ(P) actually

1This is intentionally similar to the term used in SAT, because it uses a
post-conflict, reverse chronological order traversal of the operations performed
during propagation.

has an empty AC closure. Thus, VACθ is applied by starting
with high values for θ to quickly increase the lower bound
and gradually decreasing it until θ = 1. In practice, a static
schedule based on the original cost distribution is used [4].

Cost function size strongly impacts the VAC enforcement
algorithm; its time complexity is O(nedr) per iteration, where
n is the number of variables, e the number of cost functions,
d the largest domain, and r the largest arity. A dedicated
algorithm is required to enforce a possibly weaker consistency
in the presence of global constraints.

Example 1. Let P be a WCSP with 4 variables, each with
domains {a, b}, and 5 nonzero cost functions c1(a) = 1,
c4(b) = 1, c12(b, a) = 1, c23(b, a) = 1, c34(b, a) = 1, all other
tuples and c∅, c2, c3 having cost 0. The AC closure of Bool(P)
is empty, indeed, values (1, a) and (4, b) are directly removed
from Bool(P) because c1(a) = c4(b) > 0. Consequently, value
(2, a) has no support on c12 and (3, b) has no support on
c34; These values can then be removed Finally, (2, b) has no
support on c23, and a domain wipe-out occurs at variable 2.
By analyzing the trace that led to this conflict, VAC deduces
the following sequence of EPTs, increasing c∅ by one.

1) extend(c1, c12, a, 1) 5) extend(c3, c23, b, 1)
2) extend(c4, c34, b, 1) 6) project(c2, c23, b, 1)
3) project(c2, c12, a, 1) 7) unaryProject(c2, 1)
4) project(c3, c34, b, 1)
The resulting reparameterization P ′ of P is c12(a, b) = 1,

c23(a, b) = 1, c34(a, b) = 1, and c∅ = 1, all other tuples and
c1, c2, c3, c4 having cost 0.

C. Linear Inequality Constraints

Linear constraints are global constraints capturing a linear
interaction between variables. They are expressive, compact,
and used in various optimization problems, including computer
science, operations research, and artificial intelligence [23].
We consider a linear inequality constraint cS of the form:∑

i∈S

∑
v∈Di

wivxiv ≥ C, where cS ∈ C, xiv is a 0/1
variable taking value 1 when v ∈ Di is assigned to variable
i ∈ S. Without loss of generality, we assume the weights wiv

and capacity C are positive constants. Any linear constraint
can be written in that form, using

∑
v∈Di

xiv = 1,and equality
constraints can be encoded by two inequality constraints. Ini-
tially, linear constraints are considered as hard, i.e., ∀τ ∈ ℓ(S)
satisfying the constraint, it holds that cS(τ) = 0, otherwise
cS(τ) = ⊤. If EPTs involve a linear constraint, the cost of
the allowed tuples can be modified, yielding 0 < cS(τ) < ⊤.

Recent work introduced a way to represent and propa-
gate linear constraints in a WCSP solver [7] through so-
called delta costs. A cost δiv is associated with each as-
signment i ∈ S, v ∈ Di, and it captures the amount
of costs moved from the unary cost function ci to a lin-
ear constraint cS . A cost α > 0 moved from cS to
ci(v) decreases δiv , and is denoted project(ci, cS , v, α) =
LinMoveCost(ci, cS , v, α). Thus, we can have negative δ

costs. When α < 0, costs move in the opposite direction
and increases δiv; we denote this by extend(ci, cS , v,−α) =
LinMoveCost(ci, cS , v, α). By δ∅, we denote the cost moved

from cS to c∅ (LinProject(cS , α)), which is necessarily
positive. Compared to MoveCost, LinMoveCost allows cost
moves in constant time and space, rather than exponential in
|S| − 1.

After any sequence of EPTs, the cost of an assignment τ is
defined by:

cS(τ) =

{∑
i∈S δiτ [i] − δ∅ if τ satisfies the constraint

⊤ otherwise

Initially, no cost moves have been performed, and all the δ
costs are 0. In [7], the authors define a SAC algorithm that
moves the costs between a linear constraint cS , unary cost
functions ci, ∀i ∈ S, and c∅ by solving the following linear
program, denoted LPS , where xiv are relaxed to real values:

min z =
∑

i∈S,v∈Di

(δiv + ci(v))xiv − δ∅ (1a)

∑
i∈S,v∈Di

wivxiv ≥ C (1b)∑
v∈Di

xiv = 1, ∀i ∈ S (1c)

xiv ∈ [0, 1], ∀i ∈ S, v ∈ Di (1d)

This is the linear relaxation of a Multiple-Choice Knap-
sack Problem (MCKP), which can be solved efficiently in
O(

∑
i∈S |Di|) [24]. Its dual, denoted LDS , is:

max z = Cycc +
∑
i∈S

yi − δ∅ (2a)

wivycc + yi ≤ δiv + ci(v), ∀i ∈ S, v ∈ Di (2b)
ycc ≥ 0 (2c)

where ycc (resp. yi) are real variables associated to constraints
(1b) (resp. (1c)) of the primal. LPS and LDS have the same
optimum (strong duality property). From an optimal solution
z∗, x∗ = {x∗

iv | i ∈ S, v ∈ Di} of LPS , we can directly
deduce an optimal solution y∗ = {y∗cc, y∗i | i ∈ S} of LDS .

Given a dual solution y∗, the reduced cost associated with
assignment (i, v) is rcy

∗

S (i, v) = δiv + ci(v) − wivy
∗
cc − y∗i

and corresponds to the slack of the dual constraint (2b). This
value can be interpreted as a lower bound on the difference
in the objective between any feasible solution x with xiv > 0
and x∗. We have z − z∗ ≥ rcy

∗

S (i, v).
In CFNs, the reduced cost provides a lower bound on the

minimal cost tuple τ ∈ ℓ(S) with τ [i] = v considering only cS

Procedure LinMoveCost(ci, cS , v, α)
Input: scopes s.t. i ∈ S ; v ∈Di ; cost α to move

1 ci(v)← ci(v) + α ;
2 δiv ← δiv − α

Procedure LinProject(cS , α)
1 c∅ ← c∅ + α ;
2 δ∅ ← δ∅ + α

and the unary costs ci, ∀i ∈ S. If z∗ > 0 then it is possible to
derive a set of EPTs, {extend(ci, cS , v, ci(v) − rcy

∗

S (i, v)) |
i ∈ S, v ∈ Di}

⋃
{LinProject(cS , z

∗)}, increasing c∅ by
z∗ [7]. In the following, since we manipulate only one dual
solution y∗ at a time, we omit y∗ and write rc(i, v).

III. VAC ON LINEAR CONSTRAINTS

A limitation of the propagation method for linear constraints
introduced in [7] is that constraints are propagated one-by-one
and communicate only via unary cost functions. Therefore,
once a linear constraint has absorbed a cost in some δ,
it becomes invisible to other cost functions. Moreover, the
quality of the lower bound depends largely on the propagation
order. Enforcing VACθ allows the detection of a sequence
of EPTs resulting from a combination of several constraint
propagations without a fixed propagation order. However,
VACθ requires enforcing GAC on the linear constraints in
Boolθ(P). This requires verifying for each cS ∈ C, i ∈
S, v ∈ Di, whether there exists a tuple τ ∈ ℓ(S), τ [i] = v
such that cS(τ) < θ. Specifically, each linear constraint cS is
transformed in Boolθ(P) into the following hard constraint:

Boolθ(cS)(τ) =


0 if τ satisfies the constraint and∑

i∈S δiτ [i] − δ∅ < θ

⊤ otherwise
(3)

Propagating this requires solving a Knapsack problem. This
problem is NP-hard, but several approaches have been studied,
including dynamic programming for enforcing GAC [25], ap-
proximate filtering with a fully polynomial time approximation
scheme [26], [27], and linear programming-based reduced cost
filtering [8], [28].

We show in the following section that we can use bounds
propagation, an optimal dual solution, and reduced cost filter-
ing [8] to detect a subset of inconsistent tuples in Boolθ(P).

A. Filtering for Linear Constraints with Assignment Costs

Observe that in (3), a tuple τ is forbidden either if it violates
the constraint (i.e., the sum of the selected weights is less than
the capacity), or if the delta costs are greater than or equal to
the VAC threshold (

∑
i∈S δiτ [i] − δ∅ ≥ θ).

In Boolθ(P), we classify the removal of a value (i, a) by
a hard linear constraint Boolθ(cS) as either hard or soft. A
removal is hard if no feasible tuple exists where variable i
takes value a whatever the delta costs and θ values are, i.e.,
cS(τ) = ⊤, ∀τ ∈ ℓ(S) s.t. τ [i] = a. A removal is soft if
∀τ ∈ ℓ(S) s.t. τ [i] = a, we have cS(τ) ≥ θ. Strategies for
detecting and explaining hard and soft removals differ.

Hard value removals can be detected by enforcing bounds
consistency on Bool⊤(cS), which can be performed in linear
time for inequality constraints [29].

To detect a set of values that can be soft removed from
Boolθ(P), we solve for each linear constraint cS a modified
version of LPS where ci(v) has been removed in (1a). This
modified problem is called L̃PS and an optimal solution is
denoted z̃∗, x̃∗. In Boolθ(P), unary cost functions are replaced

by (reduced) domains. After enforcing GAC on Boolθ(ci),
we have Boolθ(ci)(v) = 0, ∀v ∈ Di (other values where
ci(v) ≥ θ have been removed). The dual of L̃PS is obtained
by removing ci(v) in (2b); we call it L̃DS . The reduced costs
obtained from solving L̃PS and L̃DS allow to filter domains.
Specifically, z̃∗+ rc(i, v) provides a valid lower bound on the
minimal cost of any tuple τ ∈ ℓ(S) with τ [i] = v, accounting
for cS and the current value removals. When z̃∗+rc(i, v) ≥ θ,
(i, v) can safely be removed from Boolθ(P).

Note that this method does not enforce complete GAC.
Achieving GAC would require solving an MCKP for each
value, which, in practice, is too costly when filtering Boolθ(P).

B. Finding Explanations for Value Removals
A further requirement of VAC is an explanation for each

value removal, primarily during phase 2. An explanation
⟨cS , E⟩ for the removal of value (i, a) is a set of values E
whose removal implies the removal of (i, a) by arc consistency
on a constraint cS . An explanation is minimal if no proper
subset of E is an explanation.

For each hard value removal, a minimal explanation is
generated using conflict explanation [30].

For each soft removal of a value (i, a) by a linear constraint
cS , we need to identify a subset of the previous value removals
that are necessary to ensure that z̃∗ + rc(i, a) ≥ θ. Let Q be
the list of previous value removals made by VAC; it provides
a trivial non-minimal explanation. In the second phase of
VAC, we try to improve this explanation, by solving L̃P

ia

S , a
modified version of L̃PS with additional constraints xia = 1
and xjb = 0 for all (j, b) ∈ Q. An optimal solution is denoted
z̃ia,∗, x̃ia,∗. We have z̃ia,∗ ≥ z̃∗ + rc(i, a) ≥ θ. From this
optimal primal solution, we can compute an optimal dual
solution ỹia,∗ of the dual of L̃P

ia

S , denoted as L̃D
ia

S . Notice
that constraints xjb = 0 introduce new dual variables in L̃D

ia

S

resulting in unbounded constraints (i.e., with infinite right
hand-side in Eq.(2b)). This prevents meaningful interpretation
of the reduced costs associated to the values in Q. Instead,
we choose to tighten their dual constraints by keeping δjb for
the right-hand side in Eq.(2b), as in L̃DS . Thus, we compute
rc(j, b) = δjb − wjbỹ

ia,∗
cc − ỹia,∗j for all (j, b) ∈ Q. By doing

so, we lose the strong duality property, but still produce valid
lower bounds.

Now, if rc(j, b) ≥ 0, we can be certain that the optimal cost
z̃ia,∗ is greater than or equal to θ independently of whether
(j, b) is removed or not. Consequently, (j, b) cannot be part of
a minimal explanation for the removal of (i, a). Otherwise, if
rc(j, b) < 0, we include (j, b) in the explanation. While this
approach may result in a non-minimal explanation, finding a
minimal one would require significantly more computation.
Indeed, reduced costs account only the additional cost of
modifying a single value and do not capture interactions when
multiple values are modified together.

C. VAC-lin Subroutines
Here, we define VAC-lin, a local consistency obtained by

enforcing in Boolθ(P) the filtering process of Sec. III-A on the

linear constraints and GAC on the other constraints. Any value
removed by the filtering process of Sec. III-A would have been
removed by enforcing GAC on the linear constraints. Thus, the
following corollary of Theorem 1 holds.

Corollary 1. Let P be a WCSP such that c∅ < ⊤. If enforcing
an incomplete GAC on the linear constraints of Boolθ(P), and
GAC on the other constraints leads to a conflict, then there
exists a sequence of EPTs which when applied to P leads to
an increase in c∅.

VAC-lin can be enforced by integrating the techniques of
Section III-A into the VAC algorithm [4]. Algorithm 1 presents
the main VAC algorithm and Algorithm 2 gives the functions
specific to VAC-lin. For functions specific to table constraints,
the reader can refer to [4].

Filtering Phase: The function VAC-Filter in Alg. 1
corresponds to the filtering phase, it considers Boolθ(P) and
enforces an incomplete GAC. It ends when no more values
can be removed or when a conflict appears. It uses a queue
R containing all constraints that require propagation. Initially,
R includes every constraint. Whenever a value (i, a) has no
support on a constraint cS , it is removed and added to second
queue Q. Additionally, we record the constraint responsible
for this removal in a dedicated structure called killer. All
constraints other than cS that involve the removed value (i, a)
must then be propagated again. Both the queue Q and structure
killer are useful only for the second phase VAC-Tracer.

The function Filter(Boolθ(cS)) applies a filtering algo-
rithm to the cost function cS . It returns a cost and a set of
variables describing either a conflict or a set of inconsistent
values. Filtering of linear constraints is presented in function
LinFilter(Boolθ(cS)) of Algorithm 2 and relies on the
techniques described in Section III-A. Given a linear constraint
cS , propagation starts by enforcing bounds arc consistency
and solving L̃PS . If it is conflicting (optimal cost ≥ θ or
inconsistent constraint), then the values involved in the conflict
are identified by analysing the reduced costs, or using conflict
explanation [30]. Otherwise, if no conflict occurs, reduced
costs obtained from L̃PS are analyzed to remove inconsistent
values.

Tracing Phase: Either the first phase ends with a con-
flict in Boolθ(P) or VAC-lin terminates. The purpose of
VAC-Tracer is to identify a minimal subset of value re-
movals sufficient to explain this conflict. To achieve this,
values involved in the conflict are marked using a Boolean
function M . The objective is to identify a set of values/tuples
with non-zero costs that can serve as sources to move
cost to the marked values. Initially, only values returned
by VAC-Filter with zero unary cost are marked. Then
VAC-Tracer exploits the queue Q and the killer data struc-
ture to rewind the propagation history. Values are popped one
by one from Q and if it is marked, we trace back the cause
of its deletion.
Identifying possible sources for a marked value (i, a) can
be done by computing an explanation ⟨cS , E⟩ for its re-
moval in Boolθ(P). According to Corollary 1, moving costs

Algorithm 1: VAC general algorithm
// Propagate all the constraints and record the

reason for each value removal. Stop when a
conflict occurs or when no more values can
be removed.

1 Function(VAC-Filter())
2 R← C ;
3 while R ̸= ∅ do
4 cS ← R.Pop() ;
5 ⟨z̃∗, E⟩ ← Filter(Boolθ(cS)) ;
6 if z̃∗ ≥ θ then return ⟨z̃∗, cS , E⟩ ;
7 foreach (i, a) ∈ E do
8 Delete a from Di ;
9 killer(i, a)← cS ;

10 Q.Push(i, a) ;
11 if Di = ∅ then return

〈
⊤, ci, {(i, b) | b ∈Dcopy

i }
〉

;
12 else R← R ∪ {cS′ | cS′ ∈ C, cS′ ̸= cS , i ∈ S′} ;
13 return ⟨0, ∅, ∅⟩ ;

// Compute λ the maximal cost movable to c∅.
14 Function(VAC-Tracer())
15 Q← ∅, Dcopy ←D ;
16 ⟨λ, cS , E⟩ ← VAC-Filter() ;
17 D ←Dcopy ;
18 if cS ̸= ∅ then kcS ← 1 ;
19 foreach (i, a) ∈ E do
20 k(i, a)← 1,M(i, a)← true ;
21 if ci(a) > 0 then M(i, a)← false, λ← min(λ, ci(a)) ;
22 while Q ̸= ∅ do
23 (i, a)← Q.Pop() ;
24 if M(i, a) then
25 cS ← killer(i, a) ;
26 E ←Explanation(cS ,(i, a)) ;
27 foreach (j, b) ∈ E do
28 k(j, b)← k(j, b) + k(i, a) ;
29 kcS (j, b)← kcS (j, b) + k(i, a) ;
30 if cj(b) = 0 then M(j, b)← true ;
31 else λ← min(λ,

cj(b)

k(j,b)
) ;

32 return λ ;

from the values in E to the constraint cS enables sub-
sequent cost transfers from cS to ci(a). The constraint
responsible for the removal of (i, a) in VAC-Filter is
stored in killer(i, a). Explanations are computed by function
Explanation(cS , (i, a)). For linear constraints, this is
presented in function LinExplanation(cS , (i, a)) and
relies on techniques described in III-B. Specifically, the linear
program L̃P

ia

S is solved. If it is infeasible, an explanation is
generated using conflict explanation techniques [30], other-
wise, the explanation is based on reduced costs analysis.
Whenever values in the explanation set E have zero unary
cost, they are marked for further consideration. Since values
in queue Q are visited in reverse chronological order of their
removal from Boolθ(P), all values in any explanation E will
still be present in Q and will be visited later in the process.
This ensures that the algorithm can systematically reconstruct
a minimal explanation for the original conflict.

The maximum amount of cost λ movable to c∅ depends
on the costs available at each source and the number of
operations involving the marked values. Indeed, a single value
can contribute to multiple removals, causing its available cost
to be distributed among several cost functions. To keep track
of this, we maintain three counters. The counter k(i, a) records

the number of request made by value (i, a), while kcS (i, a)
tracks the number of request that (i, a) must extend to cS .
These counters are initialized to 0 and updated each time
(i, a) is involved in a removal. Ultimately, a sequence/set of
EPTs can be obtained by projecting a cost k(i, a) × λ from
killer(i, a) to ci(a) and extending a cost kcS (i, a) × λ from
ci(a) to cS , for all (i, a) with nonzero k structure. Then, a
final EPT is to project a cost λ from the conflicting constraint
found by VAC-Filter to c∅. These EPTs will be applied in
VAC phase 3. Ideally, to ensure that no negative costs are
introduced, it would be useful to maintain a third counter
keeping track of the number of request made by each tuple
in each linear constraint. However, since the number of tuples
increases exponentially with the arity of the constraint, this
approach is impractical for constraints of large arity. Instead,
we introduce a counter kcS giving an upper bound on the
maximal number of request made by all the tuples of cS .
This counter is only used to guarantee the correctness of λ,
it is initialized to 0 and updated only when the constraint is
involved in a conflict.

The value of λ is the largest amount of cost that can be
moved while still satisfying all requests. For example, if a
value (i, a) has an available cost of 4 and k(i, a) = 2, then
λ ≤ 4

2 = 2. Initially, λ cannot exceed the cost returned by
the filtering phase; it is then as counters increase. Finally, in

Algorithm 2: Functions specific to VAC-lin
1 Function(LinFilter(Boolθ(cS)))
2 HardRem ← Bounds-Arc-Consistency(Bool⊤(cS)) ;
3 z̃∗ ← Solve(L̃PS) ;
4 Compute reduced costs from L̃DS ;
5 if L̃PS is infeasible then
6 E ← Conflict-explanation ;
7 return ⟨⊤, E⟩ ;
8 if z̃∗ ≥ θ then
9 E ← {(j, b) ∈ Q | rc(j, b) < 0} ;

10 return ⟨z̃∗, E⟩ ;
11 SoftRem ← {(i, v) | i ∈ S, v ∈Di, z̃

∗ + rc(i, v) ≥ θ} ;
12 return ⟨0, HardRem

⋃
SoftRem⟩ ;

13 Function(LinExplanation(cS , (i, a)))

14 z̃ia,∗ ← Solve(L̃P
ia

S) ; /* Assert: z̃ia,∗ ≥ θ */

15 Compute reduced costs from L̃D
ia

S ;

16 if L̃P
ia

S is infeasible then E ← Conflict-explanation ;
17 else E ← {(j, b) | rc(j, b) < 0} ;
18 kcS ← kcS + k(i, a) ;
19 λ← min(λ, z̃ia,∗

kcS
) ;

20 return E ;

the third phase, all EPTs are performed according to killer,
and the different k structures as explained before. After this
sequence of EPTs, we know a cost of λ can be moved to c∅.
Example 2 illustrates one iteration of VAC-lin.

The space complexity of VAC-lin is the same as that of
the original VAC [4]. As for time complexity, it is dominated
by the filtering process. It requires solving for each constraint
a relaxed knapsack problem in O(rd) time [24], where r is
the arity of the largest linear constraint, and d is the largest
domain size. The number of propagations is at most nd,

with n the number of variables. Thus, the total complexity
of VAC-Filter is O(mnrd2) where m is the number of
linear constraints. Enforcing GAC on e′ table constraints
requires O(e′dr

′
) time where r′ is the arity of the largest table

constraints. In practice, VAC is often enforced on binary table
constraints (r′ = 2), thus the complexity is often dominated by
the filtering phase of the linear constraints. Therefore, GAC is
enforced on table constraints before filtering linear constraints.

Example 2. Let P be a WCSP with 6 variables, with domains
{a, b}, and 6 constraints c12345 : 7x1a+7x2a+3x3a+3x4a+
3x5a ≥ 10, c14 : x1a + x4b ≥ 1, c246 : x2b + x4a + 2x6a ≥ 1
and c1(a) = 2, c3(a) = 2, c6(a) = 2, all other tuples having
cost 0. Propagating the constraints as done in [7] does not
increase c∅. The optimal relaxed solution of this problem
is 0.824 ({x1a = 0.41176, x2a = 0.41176, x3a = 0, x4a =
0.41176, x5a = 1, x6a = 0}). We show that enforcing VAC-lin
with a threshold θ = 1 increases c∅ by 1.
In Boolθ(P), (1, a), (3, a) and (6, a) are directly removed,
it follows by bounds propagation on c12345 that (2, b) can
be removed and we set killer(2, b) = c12345. Similarly,
(4, b) is removed by bounds propagation on c246 and we set
killer(4, b) = c246. Finally c14 is inconsistent with explanation
{(1, a), (4, b)}; thus, Boolθ(P) is not GAC.
We set λ = ⊤ and start tracing back the GAC operations. c14
is inconsistent because (1, a) and (4, b) have been removed.
The k structures are updated: k(1, a) = kc14(1, a) = k(4, b) =
kc14(4, b) = kc14 = 1. We immediately have c1(a) = 2. We
can use this cost as a source and update λ: λ = c1(a)

k(1,a) = 2.
Value (4, b) verifies c4(b) = 0, hence, the value is marked:
M(4, b) = true and must be traced. Value (4, b) has been
removed because it has no support on c246, the solver com-
putes the minimal explanation {(2, b), (6, a)} using conflict
explanation [30]. The k structures are updated: k(2, b) =
kc246(2, b) = k(6, a) = kc246(6, a) = kc246 = k(4, b) = 1. We
directly have c6(a) = 2, we can use this cost as a source, λ
does not need to be modified. Value (2, b) verifies c2(b) = 0;
the value is marked: M(2, b) = true and must be traced.
Value (2, b) has been removed because it has no support on
c12345, the solver computes the minimal explanation {(1, a)}
using conflict explanation [30]. We update the k structures:
k(1, a) = k(1, a) + k(2, b) = 2, kc12345 = kc12345(1, a) = 1.
We update λ: λ = c1(a)

k(1,a) = 1. No more values are marked,
the conflict has been explained.
We deduce the following EPTs from killer, k structures and λ:

1) extend(c1, c12345, a, 1) 5) project(c4, c246, b, 1)
2) project(c2, c12345, b, 1) 6) extend(c4, c14, b, 1)
3) extend(c2, c246, b, 1) 7) extend(c1, c14, a, 1)
4) extend(c6, c246, a, 1) 8) LinProject(c14, 1)
After reformulation, we have δc123451a = δc2462b = δc2466a =

δc144b = δc141a = δc14∅ = 1, δc123452b = δc2464b = −1, and c3(a) =
2, c6(a) = c∅ = 1, all other tuples and c1 having cost 0.

IV. EXPERIMENTAL RESULTS

We implemented VAC-lin in toulbar2, an open-source C++
WCSP solver.2 The original VAC algorithm was already

2https://github.com/toulbar2/toulbar2 version 1.2.1.

implemented in the solver, but only for binary cost functions
in extension, with VAC maintained incrementally inside each
search node [31]). Here, we test three variants of toulbar2.
The first, a base version, applies a weaker SAC algorithm
(EDAC [21] and partial F∅IC for linear constraints [7]) at every
search node of a hybrid best/depth-first branch-and-bound
search method [32]. These are the default settings of toulbar2
and we denote this configuration as no-VAC. The second
version, denoted VAC, is based on no-VAC and additionally
applies the existing version of VAC (which ignores linear
constraints) in preprocessing. The third version, denoted VAC-
lin, applies during preprocessing VAC with our modifications
to make it take linear constraints into account. We compared
these three variants of toulbar2 (no-VAC, VAC, VAC-lin) with
choco, an open-source Java CP solver, and IBM cplex, a state-
of-the-art integer programming solver.3 Choco and toulbar2
used the same dom/wdeg variable ordering heuristic [33] with
last conflict [34]. The value ordering heuristic is the minimum
domain value for choco and EAC/VAC/VAC-lin support value
for toulbar2 [4], [35]. In VAC and VAC-lin, this corresponds
to choosing first the minimum domain value in Bool(P) after
doing the filtering phase. Both solvers use solution phase
saving [36].

To test our approach with a large number of linear con-
straints, we chose integer linear problems from the MIPLIP
2017 benchmark. We also tested the Computational Protein
Design (CPD) and Quadratic Assignment Problem (QAPLIB)
benchmarks, which have few additional linear constraints,
large domains, and several binary cost functions in exten-
sion. We also tested a selection of the Pseudo-Boolean 2007
Evaluation benchmark (PB07). Last, to show the expressive
power of CFNs with linear constraints, we experimented with
the XCSP 2022/2023 benchmarks. For CPD, QAPLIB, and
XCSP, we used a support encoding for cplex [12]. We used
table constraints for choco to encode the quadratic objective
of CPD and QAPLIB.

Experiments on MIPLIB were done on a single thread of a
cluster of AMD EPYC 7713 at 2.0/3.7 GHz (turbo) with 8GB
and 3, 600-second CPU-time limits. Experiments on CPD /
XCSP / PB07 / QAPLIB were run on a single core of an Intel
Xeon E5-2680 v3 at 2.5GHz with 64GB and 3, 600s / 2, 400
/ 1, 800 / 1, 200 limits respectively.4

A. MIPLIB 2017 0/1LP

We selected 200 instances from the MIPLIB 2017 collec-
tion, containing only Boolean 0/1 variables. Among them,
184 instances have known feasible solution.5 We preprocessed
them using cplex and applied our methods to the preprocessed
instances.6 In Tab. I, we report the average quality of lower

3https://github.com/chocoteam/choco-solver version 4.10.14 and cplex ver-
sion 22.1.1.0 in single-thread mode and with non-premature stop parameters
EPAGAP=EPGAP=EPINT=0.

4For CPD, we add the option -d: in toulbar2 to remove its default
dichotomic branching rule.

5https://miplib.zib.de/tag collection.html
6We transformed the original real cost values in fixed-precision integer costs

using 3 digits after decimal.

https://github.com/toulbar2/toulbar2
https://github.com/chocoteam/choco-solver
https://miplib.zib.de/tag_collection.html

benchmark total # av. no-VAC VAC VAC-lin LP
MIPLIB 2017 184 147 59.51% (157) 59.23% (158) 65.09% (147) 82.20% (179)

CPD 30 25 95.56% (30) 97.37% (30) 97.74% (30) 98.13% (25)
PB’2007 77 77 62.67% (77) 63.65% (77) 83.93% (77) 86.44% (77)

XCSP’2022 158 100 19.72% (136) 21.48% (136) 21.78% (136) 41.47% (100)
XCSP’2023 155 88 28.17% (137) 27.65% (137) 27.87% (132) 53.65% (93)

QAPLIB 132 132 5.16% (132) 5.16% (132) 11.07% (132) 12.77% (132)

TABLE I: Quality of lower bounds per benchmark averaged over
the number of instances (column # av.) where all methods produced
a lower bound in space and time limits. In parentheses, number of
instances where a particular method produced a lower bound.

benchmark total choco cplex toulbar2-no-VAC toulbar2-VAC toulbar2-VAC-lin
MIPLIB 2017 184 14 100 17 16 17

CPD 30 0 19 26 28 28
PB’2007 77 16 67 56 58 67

XCSP’2022 158 41 63 54 54 57
XCSP’2023 155 20 39 17 17 22

QAPLIB 132 17 22 31 31 32

TABLE II: Number of solved instances per benchmark.

bounds for our three variants, no-VAC, VAC, and VAC-lin,
and also for the continuous linear relaxation found by cplex
(column LP in Tab. I).7 As expected, the linear relaxation
provides the strongest bounds. It is also the most robust
with only 5 instances where the dual simplex did not finish
in 1 hour. Default toulbar2 (no-VAC) failed to produce an
initial lower bound on almost 15% of the instances, indicating
that substantial engineering work remains to reach the same
efficiency level as a commercial state-of-the-art LP solver.
Although the original VAC algorithm is not advantageous on
this benchmark due to the limited number of arity-2 linear
constraints, our VAC-lin significantly improves the initial
bound, going from 59% to 65% on average. However, it was
insufficient to solve more instances for this benchmark (17
solved instances in total, whereas cplex solved 100). Choco
performed poorly, solving 14 instances (Tab. II and Supp.
Fig. 1.a).

B. Computational Protein Design with Diversity Constraints

As in [7], we selected 30 CPD instances with 23-97
variables and largest domain sizes 48-194. For each instance,
ten diverse solutions with a Hamming distance ten were
generated using toulbar2 with a dual encoding [37]. Next,
we transformed the resulting solutions into ten linear diversity
constraints and added them to our original instance. Choco
could not solve any CPD instance in 1 hour. It found solutions
for half of the instances with an average distance to optimality
of 0.22%. VAC and VAC-lin produced almost the same results,
solving 28 instances optimally. VAC-lin improved the initial
lower bound found by VAC in one-third of the instances
(Tab. I). The absolute initial gap was reduced by 9.93%,
when moving from VAC to VAC-lin. However, it did not
significantly reduce the number of search nodes or solving
time. A different behavior was observed between VAC and
VAC-lin when applying the additional upper-bound prepro-
cessing RASPS [35]. VAC-rasps solved 29 and VAC-lin-rasps

7The quality of an initial lower bound l for a given instance with best-
known solution value b and trivial lower bound t < b (computed as the sum
of the minimum of each cost function) is defined by (l − t)/(b − t). We
report average quality over the number of successful instances producing a
bound at the root search node for all the tested methods.

solved 30 instances. Finally, no-VAC solved 26 and cplex 19
instances.

C. Pseudo Boolean 2007 OPT-SMALLINT-LIN-Other

We ran experiments on 77 instances introduced at PB 2007
Evaluation. They are unweighted Max-SAT instances with
66.3% of arity-2 clauses, 25% of arity-3, and the remainder
from arity 4 up to 3, 140.8 Cplex obtained the best results,
solving 67 instances within the CPU-time limit of 1, 800s;
VAC-lin also solved 67 instances but was much slower than
CPLEX (Supp. Fig. 1.c).For this benchmark, VAC-lin clearly
dominates VAC and no-VAC, which solved 58 and 56 in-
stances respectively.9 The largest instance solved by VAC-lin
(aksoy/normalized-fir08 area delay) has 124, 856 variables
and 521, 620 clauses of maximum arity 1, 023. Choco did not
perform well, solving only 16 instances. However, it found
better solutions on the unsolved aksoy/decomp instances than
the other competitors.

D. XCSP 2022 and 2023 MiniCOP Competition

We restricted experiments to the mini COP category of the
2022 and 2023 XCSP competitions.10

Although the lower bound quality of VAC-lin is slightly
better than VAC (Tab. I), it is much higher in some particular
families (XCSP22/CoinsGrid, XCSP23/Auctions) where the
solving time was greatly reduced compared to VAC. Thus,
VAC-lin solved slightly more instances than VAC or no-VAC
(Tab. II). It also performed better than or similar to choco
depending on the benchmark.11

The strong results obtained by cplex are not surprising. They
were already observed in past MiniZinc Challenges.

E. Quadratic Assignment Problem Library

We took 132 instances from the QAPLIB.12 For a problem
of size N , we expressed the quadratic objective function as
a binary Weighted CSP with N variables of domain size N .
The permutation constraint is encoded for toulbar2 and cplex
as forbidden tuples for any pair of two variables (i.e., they
cannot take the same value), and N redundant (generalized)
linear constraints of arity N are added to ensure that each value
is assigned to at least one variable. In Choco, it is encoded as
an AllDifferent constraint.

Within the CPU-time limit of 1, 200 seconds, compared to
no-VAC and to VAC, VAC-lin solved the same subset of 31
instances twice as fast (48.37s on average for VAC-lin, 80.8s
for VAC and 84.5s for no-VAC) and it solved one additional

8http://www.cril.univ-artois.fr/PB07/benchs/PB07-OTHER.tar
9VAC and no-VAC didn’t solve normalized-f20c10b 001 area delay

whereas VAC-lin solved it in 25.7s and cplex in 14.5s.
10https://xcsp.org/competitions
11Compared to XCSP’2023 official results, choco could not solve

BeerJugs-table-07, BeerJugs-table-09, BeerJugs-table-10, Sonet-s2ring02,
TravelingSalesman-015-30-00, but solved HCPizza-20-20-2-8-02 and
TSPTW-n040w020-1. The different parameter settings can explain this
discrepancy. We used dom/wdeg instead of dom/wdeg cacd and added
solution phase saving.

12http://coral.ise.lehigh.edu/wp-content/uploads/2014/07/qapdata.tar.gz, ex-
cluding four instances (esc128, tai150b, tai256c, tho150) of size strictly
greater than 100.

https://zenodo.org/records/15691390?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQyNzk0YTUyLWRiNjUtNDdkYS1iMTM0LTFmZmYxZDk4YmU3ZSIsImRhdGEiOnt9LCJyYW5kb20iOiJmMjlhNjc4MTM5YWVhY2IyNmNhZjcxMDkzNzRmNzNiZiJ9.OnnWXxL4reecgc9FZUwczQiO4GborElk17xTfrZn_D9ny6vsR8oOPNkXDa9ueEZ_8nsLeNxjSykfxcNYYV7PTQ
https://zenodo.org/records/15691390?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQyNzk0YTUyLWRiNjUtNDdkYS1iMTM0LTFmZmYxZDk4YmU3ZSIsImRhdGEiOnt9LCJyYW5kb20iOiJmMjlhNjc4MTM5YWVhY2IyNmNhZjcxMDkzNzRmNzNiZiJ9.OnnWXxL4reecgc9FZUwczQiO4GborElk17xTfrZn_D9ny6vsR8oOPNkXDa9ueEZ_8nsLeNxjSykfxcNYYV7PTQ
https://zenodo.org/records/15691390?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQyNzk0YTUyLWRiNjUtNDdkYS1iMTM0LTFmZmYxZDk4YmU3ZSIsImRhdGEiOnt9LCJyYW5kb20iOiJmMjlhNjc4MTM5YWVhY2IyNmNhZjcxMDkzNzRmNzNiZiJ9.OnnWXxL4reecgc9FZUwczQiO4GborElk17xTfrZn_D9ny6vsR8oOPNkXDa9ueEZ_8nsLeNxjSykfxcNYYV7PTQ
http://www.cril.univ-artois.fr/PB07/benchs/PB07-OTHER.tar
https://xcsp.org/competitions
http://coral.ise.lehigh.edu/wp-content/uploads/2014/07/qapdata.tar.gz

instance (chr25a).13 Although it has a theoretically stronger
lower bound, cplex solved only 22 instances. Choco solved
17 instances.

V. CONCLUSION

Although VAC-lin improved the initial lower bound com-
pared VAC, in many cases it was insufficient to obtain sig-
nificant speedups, except on PB07, QAPLIB and on some
particular categories of XCSP. Applying a stronger soft arc
consistency algorithm during the search can pay off for some
difficult instances [39]. Testing VAC-lin in such situations
remains future work. In the future, we plan to apply the
methodology developed for linear constraints to other global
constraints, such as AllDifferent.

ACKNOWLEDGMENT

Our work has benefited from the AI Interdisciplinary Insti-
tute ANITI, funded by the French PIA3 program under the
Grant agreement ANR-19-PI3A-0004.

REFERENCES

[1] M. Cooper, S. de Givry, and T. Schiex, “Graphical models: queries,
complexity, algorithms,” LIPIcs, vol. 154, pp. 4–1, 2020.

[2] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint program-
ming. Elsevier, 2006.

[3] R. Dechter and I. Rish, “Mini-buckets: A general scheme for bounded
inference,” Journal of the ACM, vol. 50, no. 2, pp. 107–153, 2003.

[4] M. C. Cooper, S. de Givry, M. Sánchez, T. Schiex, M. Zytnicki, and
T. Werner, “Soft arc consistency revisited,” Artificial Intelligence, vol.
174, no. 7-8, pp. 449–478, 2010.

[5] D. Allouche, C. Bessiere, P. Boizumault, S. De Givry, P. Gutierrez,
J. H. Lee, K. L. Leung, S. Loudni, J.-P. Métivier, T. Schiex et al.,
“Tractability-preserving transformations of global cost functions,” Arti-
ficial Intelligence, vol. 238, pp. 166–189, 2016.

[6] S. de Givry and G. Katsirelos, “Clique cuts in weighted constraint
satisfaction,” in Proc. of CP-17, Melbourne, Australia, 2017, pp. 97–
113.

[7] P. Montalbano, S. de Givry, and G. Katsirelos, “Multiple-choice knap-
sack constraint in graphical models,” in Proc. of CPAIOR-22, Los
Angeles, CA, USA, 2022, pp. 282–299.

[8] F. Focacci, A. Lodi, and M. Milano, “Cost-based domain filtering,” in
Proc. of CP-99, Alexandria, VA, USA, 1999, pp. 189–203.

[9] M. C. Cooper, S. de Givry, and T. Schiex, Valued Constraint Satisfaction
Problems. Springer International Publishing, 2020, pp. 185–207.

[10] V. Kolmogorov, “Convergent tree-reweighted message passing for en-
ergy minimization,” IEEE transactions on pattern analysis and machine
intelligence, vol. 28, no. 10, pp. 1568–1583, 2006.

[11] P. Vaidya, “Speeding-up linear programming using fast matrix multipli-
cation,” in 30th Annual Symposium on Foundations of Computer Science,
1989, pp. 332–337.

[12] B. Hurley, B. O’Sullivan, D. Allouche, G. Katsirelos, T. Schiex, M. Zyt-
nicki, and S. de Givry, “Multi-language evaluation of exact solvers in
graphical model discrete optimization,” Constraints, vol. 21, no. 3, pp.
413–434, 2016.

[13] D. Prusa and T. Werner, “Universality of the local marginal polytope,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Portland, OR, USA, 2013, pp. 1738–1743.

[14] T. Werner, “A Linear Programming Approach to Max-sum Problem: A
Review.” IEEE Trans. on Pattern Recognition and Machine Intelligence,
vol. 29, no. 7, pp. 1165–1179, Jul. 2007.

[15] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss, and T. Jaakkola,
“Tightening LP relaxations for MAP using message-passing,” in Proc.
of UAI, Helsinki, Finland, 2008, pp. 503–510.

13VAC-lin solved chr25a in 114sec and 142,042 search nodes. cplex didn’t
end in 1,200s. The best 0/1LP approach reported in [38] (R-III) solved in
274s and 5,164 nodes using a Pentium 1.7GHz and cplex 9.0.

[16] N. Komodakis, N. Paragios, and G. Tziritas, “MRF energy minimization
and beyond via dual decomposition,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 3, pp. 531–552, 2010.

[17] D. Sontag, D. Choe, and Y. Li, “Efficiently searching for frustrated
cycles in MAP inference,” in Proc. of UAI, Catalina Island, CA, USA,
2012, pp. 795–804.

[18] S. Tourani, A. Shekhovtsov, C. Rother, and B. Savchynskyy, “Taxonomy
of dual block-coordinate ascent methods for discrete energy minimiza-
tion,” in Proc. of AISTATS-20, Palermo, Sicily, Italy, 2020, pp. 2775–
2785.

[19] T. Schiex, “Arc consistency for soft constraints,” in Proc. of CP-00,
Singapore, 2000, pp. 411–424.

[20] J. Larrosa, “On arc and node consistency in weighted CSP,” in Proc. of
AAAI-02, Edmondton, CA, USA, 2002, pp. 48–53.

[21] S. de Givry, F. Heras, M. Zytnicki, and J. Larrosa, “Existential arc
consistency: Getting closer to full arc consistency in weighted CSPs,”
in Proc. of IJCAI-05, Edinburgh, Scotland, 2005, pp. 84–89.

[22] M. Zytnicki, C. Gaspin, S. de Givry, and T. Schiex, “Bounds Arc
Consistency for Weighted CSPs,” Journal of Artificial Intelligence
Research, vol. 35, pp. 593–621, 2009.

[23] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
applied mathematics, vol. 123, no. 1-3, pp. 155–225, 2002.

[24] D. Pisinger, “A minimal algorithm for the multiple-choice knapsack
problem,” European Journal of Operational Research, vol. 83, no. 2,
pp. 394–410, 1995.

[25] M. A. Trick, “A dynamic programming approach for consistency and
propagation for knapsack constraints,” Annals of Operations Research,
vol. 118, pp. 73–84, 2003.

[26] M. Sellmann, “Approximated consistency for knapsack constraints,” in
Proc. of CP-03, Kinsale, Ireland, 2003, pp. 679–693.

[27] ——, “The practice of approximated consistency for knapsack con-
straints,” in Proc. of AAAI-04, San Jose, CA, USA, 2004, pp. 179–184.

[28] G. Claus, H. Cambazard, and V. Jost, “Analysis of reduced costs filtering
for alldifferent and minimum weight alldifferent global constraints,” in
Proc. of ECAI-20, Santiago de Compostela, Spain, 2020, pp. 323–330.

[29] W. Harvey and J. Schimpf, “Bounds consistency techniques for long
linear constraints,” in TRICS CP 2002 Workshop, Ithaca, NY, USA,
2002, pp. 39–46.

[30] E. Hebrard and M. Siala, “Explanation-based weighted degree,” in Proc.
of CPAIOR-17, Padua, Italy, 2017, pp. 167–175.

[31] H. Nguyen, S. de Givry, T. Schiex, and C. Bessiere, “Maintaining
virtual arc consistency dynamically during search,” in Proc. of ICTAI-14,
Limassol, Cyprus, 2014, pp. 8–15.

[32] D. Allouche, S. de Givry, G. Katsirelos, T. Schiex, and M. Zyt-
nicki, “Anytime Hybrid Best-First Search with Tree Decomposition for
Weighted CSP,” in Proc. of CP-15, Cork, Ireland, 2015, pp. 12–28.

[33] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting system-
atic search by weighting constraints,” in Proc. of ECAI-04, Valencia,
Spain, vol. 16, 2004, p. 146.

[34] C. Lecoutre, L. Saı̈s, S. Tabary, and V. Vidal, “Reasoning from last
conflict(s) in constraint programming,” Artificial Intelligence, vol. 173,
pp. 1592,1614, 2009.

[35] F. Trösser, S. de Givry, and G. Katsirelos, “Relaxation-aware heuristics
for exact optimization in graphical models,” in Proc. of CPAIOR-20,
Vienna, Austria, 2020, pp. 475–491.

[36] E. Demirovic, G. Chu, and P. J. Stuckey, “Solution-based phase saving
for CP: A value-selection heuristic to simulate local search behavior in
complete solvers,” in Proc. of CP-18, Lille, France, 2018, pp. 99–108.

[37] M. Ruffini, J. Vucinic, S. de Givry, G. Katsirelos, S. Barbe, and
T. Schiex, “Guaranteed diversity and optimality in cost function network
based computational protein design methods,” Algorithms, vol. 4, no.
6:168, 2021.

[38] H. Zhang, C. Beltran-Royo, and L. Ma, “Solving the quadratic as-
signment problem by means of general purpose mixed integer linear
programming solvers,” Annals of Operations Research, vol. 207, pp.
261–278, 2013.

[39] P. Montalbano, D. Allouche, S. De Givry, G. Katsirelos, and T. Werner,
“Virtual pairwise consistency in cost function networks,” in Proc. of
CPAIOR-23, Nice, France, 2023, pp. 417–426.

APPENDIX

See the full-paper version with supplementary Fig. 1 and
Tables about solution quality on arXiv.XXX.

	Introduction
	Background
	Weighted Constraint Satisfaction Problem
	Soft Arc Consistency
	Linear Inequality Constraints

	VAC on Linear Constraints
	Filtering for Linear Constraints with Assignment Costs
	Finding Explanations for Value Removals
	VAC-lin Subroutines

	Experimental Results
	MIPLIB 2017 0/1LP
	Computational Protein Design with Diversity Constraints
	Pseudo Boolean 2007 OPT-SMALLINT-LIN-Other
	XCSP 2022 and 2023 MiniCOP Competition
	Quadratic Assignment Problem Library

	Conclusion
	References
	Appendix

