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Abstract

Motivation: Inferring gene regulatory networks in non-independent genetically-related panels is a
methodological challenge. This hampers evolutionary and biological studies using heterozygote individuals
such as in wild sunflower populations or cultivated hybrids.

Results: First, we simulated 100 datasets of gene expressions and polymorphisms, displaying the same
gene expression distributions, heterozygosities and heritabilities as in our dataset including 173 genes
and 353 genotypes measured in sunflower hybrids. Secondly, we performed a meta-analysis based on
six inference methods (Lasso, Random Forests, Bayesian Networks, Markov Random Fields, Ordinary
Least Square and Findr) and selected the minimal density networks for better accuracy with 64 edges
connecting 79 genes and 0.35 AUPR score on average. We identified that triangles and mutual edges are
prone to errors in the inferred networks. Applied on classical datasets without heterozygotes, our strategy
produced a 0.65 AUPR score for one dataset of the DREAM5 Systems Genetics Challenge. Finally, we
applied our method to an experimental dataset from sunflower hybrids. We successfully inferred a network
composed of 105 genes connected by 106 putative regulations with a major connected component.
Availability: Our inference methodology dedicated to genomic and transcriptomic data is available at
https://forgemia.inra.fr/sunrise/inference_methods.

Contact: simon.de-givry@inrae.fr

Supplementary information: The data are available in the Data INRAE, at https://doi.org/10.15454/
vrgwz?2 (simulated datasets and also the output of meta-analysis) and https://doi.org/10.15454/HESVAQ
(experimental sunflower dataset), and the complete descriptions of the inference methods used by the
meta-analysis, the gene selection procedure related to drought and heterosis are available online.

1 Introduction networks from observational data ( R ). Nevertheless, it

One of the main goals of Systems Biology is to decipher the complex is often difficult to identify the best-suited method to apply in a specific

behaviour of a living cell in its environment. Gene Regulatory Networks
(GRN) are simplified representations of gene-level interactions and

experimental context. To this end, artificial datasets can be helpful to
evaluate different network inference methods and then select the most

network inference methods are powerful tools to reconstruct these suitable one to a specific dataset.
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1.1 Experimental and Biological Context

Water deprivation impacts most, if not all cellular and physiological
processes during the life cycle of a plant. Numerous studies describing
coregulated genes in different organs under different drought scenarios
have been reported (reviewed in

( ) and cited more than 2,000 times since then). The inherent
complexity resulting from the high number of molecular players as well
as the timing and level of their induction into pathways makes molecular
deciphering of drought response an archetypal systems biology challenge.
Domesticated sunflower (Helianthus annuus) is the major oilseed crop
in drought-prone environments in the world because it is considered
as tolerant to water deficit ( s R s ).] The
production is mainly done by hybrid genotypes to use the heterosis effect.
Crossing one female and one male line, the heterosis phenomenon gives
progeny more vigorous than either of the two parents ( , ).
Previous works have identified genes controlling drought response in
sunflower ( R ) and these have been shown to be under
selective pressure during the breeding of modern hybrids. The responses
of sunflower hybrids to drought were shown to be different from those of
their parents ( s ); e.g. the sunflower hybrid
species H. deserticola revealed transgressive gene expression profiles
as compared to its parent species H. annuus and H. petiolaris and this
modified response could have been key to its better adaptation to drier
environments ( s R s ).

1.2 Overview of Gene Regulatory Network Inference
Methods

A GRN is an abstract but convenient representation of complex biological
processes ( s
of direct or indirect regulations between pairs of genes through a
simple directed graph with genes as nodes and pairwise regulations as
oriented edges.” The reconstruction of this graph from observational gene

) and allows representation

expression data is called the network inference. It is a complex problem
with combinatorial (super-exponential number of directed graphs®)
and statistical issues (identifiability and high-dimension). Currently, a
number of inference methods, including correlation, regression, mutual
information, and Bayesian network methods, have been defined. The
Dialogue for Reverse Engineering Assessments and Methods (DREAM)
challenges resulted in several comparisons of these methods, by providing
artificial or experimental datasets ( N ). Recent reviews
on the various network inference methods can be found in
(017); (2019);

( ). In genetical genomics context ( N
of data are available at the same time: (i) expression profiles and (ii)

), two types

genetic polymorphisms (usually single nucleotide polymorphisms (SNP)),
for each individual of a population. Then, the combination of these data
is exploited by the network inference methods. The DREAMS Systems
Genetics Challenge* took place in the genetical genomics context by
providing challengers datasets composed of gene expression and SNP
measurements. A meta-analysis method combining three Bayesian and
regression methods was the most successful ( s ). This
meta-analysis method was further improved by including bootstrapping

and random forest techniques ( s ). Other recent

! https://www.fas.usda.gov/data/oilseeds- world-markets-and-trade
2 We consider here unlabeled edges. Possible labels could have been the
regulation sign, activation/repression, its magnitude or a confidence score.

3 With 2p(P—1) digraphs for p genes, it is larger than the number of atoms
in the observable universe for p > 16.

4 https://dreamchallenges.org/dream-5-systems-genetics-challenge

approaches have relied on likelihood ratio tests ( s ;
s ), or a panel of regression and mutual information
methods ( s
the latter reporting state-of-the-art results on DREAMS Systems Genetics
Challenge (GENIE3) ( R ; s
). However such previous studies in the genetical genomics context
have been limited to artificial datasets with a population of independent
and homozygous individuals, except for ( );

), or explored random forest methods with

( ) applied on human and yeast data respectively.

1.3 Artificial Datasets

Different approaches have been tried to design realistic artificial gene
expression data ( N ). SysGenSIM ( N

) simulates gene expression data from genomic data and artificial
networks, SynTReN ( s
topologies from E. coli or S. cervisae to simulate gene expression data.

) exploits real-network

Both these approaches rely on deterministic mathematical models of
the gene expressions and generate steady-state data using a system of
nonlinear ordinary differential equations. Other more complex modelling
approaches based on stochastic models, such as GeneNetWeaver (

s ), sgnesR ( s ) or sismonr (

s ) produce steady-state or time-series data for mRNA and
(complexes of) proteins. sismonr and SysGenSIM are the only simulators
to incorporate DNA variation effects in their model. SysGenSIM can
produce large steady-state data and was the one used in the DREAMS
Systems Genetics Challenge to produce the artificial datasets.

Identifying the GRN for drought stress response in hybrid sunflower,
while being of great interest to both evolutionary biology and plant
breeding, constitutes a methodological challenge. In order to choose an
efficient network inference method adapted to our biological context, we
built artificial datasets with biological properties as close as possible to our
experimental dataset. We then applied different network inference methods
on the artificial datasets and evaluate their efficiency in our context.

2 Datasets on Hybrid Genotypes
2.1 Measured Dataset

RNA expression data of 173 genes were produced on 353 sunflower hybrids
from an incomplete factorial design with 2x36 parental lines (

s ) grown under field conditions as described in the data
paper ( ,
associated with this dataset. First, hybrids are obtained from homozygous
parental lines that are genetically connected. Besides, hybrids are

). Several biological properties are

heterozygous and gene expressions are subject to heterosis. We selected
the measured genes for being mostly transcription factors (TF) annotated
for drought sensitivity and responding to it and to heterosis on the data
described in (
(Section 2 and 3). Expression measurement protocols are fully described
in (

) and in the Supplementary Materials

). SNP markers of the 36 homozygous
parental haplotypes were described in ( ). We deduced
the SNPs of the 353 hybrid genotypes by combining those of their two
parental haplotypes.

2.2 Simulated Datasets

To identify the best-suited inference method for our experimental dataset,
we needed to construct artificial datasets with biological properties close
to the measured one. For this, we designed a three-step strategy: (1) build
a reference network, (2) simulate hybrid genotypes, (3) simulate gene
expression data and adjust parameters.
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Fig. 1. Reference network based on gene-gene interactions from AtPID, AtRegNet and
PlantRegMap databases, and composed of 143 genes with 124 genes connected by 313
edges and organised in one component with a density of 2.1%. In this graph, the size
of nodes depends on their degree. Dark blue nodes and edges are associated to the same
strongly connected component.

2.2.1 Build the Reference Network
We decided to construct an artificial network based on biological
information to obtain a realistic shape, particularly in term of graph
density heterogeneity. Among plant models, with enough described gene
regulations, A.thaliana is the closest to H.annuus. As our measured dataset
is composed of a subset of H.annuus genes involved in drought response,
we decided to also use a subset of A.thaliana genes to be the nodes of the
artificial network. For that, we selected the homologs of our H.annuus
genes  ( s ). For 13 pairs of H.annuus genes, the
same homolog A.thaliana gene was found. Such A.thaliana genes were
duplicated in our artificial network to mimic a recent duplication event as
characterized for H.annuus genome ( R ). Information
on gene interactions was sourced from three public databases: (i) AtPID
), (ii) AtRegNet
containing regulations between TFs and target genes (

s ), and (iii) PlantRegMap, including regulations between TFs
and other genes ( )

containing interactions between proteins ( s

). These databases are compilations
of information found in the literature, resulting from experiments, or
predicted regulations. In these databases, we decided to select only
oriented links corresponding to gene regulations (and not protein-protein
interactions), involving two genes of our list. Overall, 364 regulations (36
in AtPID, 16 in AtRegNet, and 312 in PlantRegMap) were collected to
compose our reference network. In the AtRegNet database, the impact on
the expression of a target gene is described for some regulations. Among
them, 64% induced activation and 36% repression of the expression of the
target gene. Hence, for our reference network, we decided to randomly
associate a particular type of regulation for each edge with the same
probability of activation and repression of expression as in the AtRegNet
database. Our chosen reference network consisted of 143 genes distributed
into a single connected component of 124 genes and 313 edges with a graph
density of 2.1% in addition to 19 unconnected genes (Figure 1). This graph
contains 99 triangles and 7 mutual edge motifs.

2.2.2 Simulation of Hybrid Genotypes

To construct artificial datasets with close biological properties, 463 virtual
hybrid genotypes were created from the partial genetic design of 36 X
36 real parents ( , ). To simplify the model of gene
regulations used in Sec. 2.2.3, we considered only one DNA variant per
gene based on SNPs present in the genomic and promoter sequence (500bp.

upstream) regions of the gene ( , ). Using K-medoid

clustering with Manhattan distance on the SNP data, for each gene, parental
haplotypes were classified into two groups (with a DNA variant score of
0 or 1). The genotype for hybrids on each gene is the sum of the parental
scores and can thus be 0, 2 (homozygous), or 1 (heterozygous).

2.2.3 Simulation of Gene Expressions

To produce simulated measures of expression for the selected genes, we
used the SysGenSIM ( s
differential equations and adapted to the genetical genomics context. In
this model, gene expressions are based on the gene network topology
and genetic variation (SNP) with only two haplotypes per gene. DNA

) data simulator, based on ordinary

variants have either a cis-effect (influences the rate of transcription of
the gene) or a trans-effect (modifies the efficiency of the gene regulation
activity). The equation describing the accumulation of a gene transcript for
a given genotype is composed of two parts: the expression of the transcript
and its degradation. The expression rate is modulated by the effect of its
DNA variant and the expression and DNA variant of the regulators of
this gene in the network. Therefore, regulator DNA variants can impact
gene regulation and are fed as input data to the simulator. SysGenSIM
is designed for homozygous Recombinant Inbred Lines and we slightly
modified the simulator to take into account our heterozygous hybrids and
mimic allelic dominance, which is important for heterosis. In the case
of a heterozygous gene, the DNA variant effect is randomly chosen with
an 80% probability to be additive, and otherwise (20%) to be dominant
for either allele. To generate a simulated dataset in SysGenSIM close to
our measured one, we tuned to 25% the cis-to-trans ratio of DNA variant
effects to obtain the same heritability (computed as described in
( )) distribution among genes in the two datasets (Supp. Fig. 1).
By randomly choosing the type of activator or repressor regulations,
DNA variant effects (cis or trans) and allelic dominance effects, we
successfully produced 100 gene expression datasets. They showed
different regulation behaviours for the same reference network and same
genotypes (143 genes and 463 hybrid genotypes) i.e. they displayed
’above the best’ or ’below the worst’ parent heterotic expression. This
phenomenon, that represents only a small part of regulatory processes
explaining heterosis, was observed in 35 and 41 genes respectively,
suggesting these datasets include larger heterotic expression patterns.

3 Network Inference Methods

We applied six network inference methods on the simulated datasets to
evaluate their accuracy by comparing the inferred networks to the reference
network. Four of them were previously applied to the DREAMS Systems
Genetics Challenge (Bayesian Network, Lasso, Random Forest, and Findr)
( , ; , ; ; ;

s )), and two are new methods, one based on
Markov random fields (PE-MRF) and the second one exploits genomic
relationship between individuals (OLS with kinship matrix). A meta-
analysis of the results obtained by these methods was also conducted via
the construction of a commensurable score. We present here the specificity
and implementation of each method. Given p genes, the expression level
of agenei € {1,...,p} is noted E;, and M; € {0, 1,2} represents
its haplotypic marker state (in our case it corresponds to the DNA variant
score). The methods are used to predict the impact of the expression of a
gene F; on the expression of a gene F;, i # j, or the impact of the DNA
variant M; on E;. Further details are given in Supplementary Materials.

3.1 Methods for Network Inference

Least Absolute Shrinkage and Selection Operator (Lasso) method is used
to solve the penalised linear regression problem Y = X 60 +¢, where Y is
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the expression of a target gene E/; and the regressors X are expressions and
haplotypic markers of other genes (E; and M;), while assuming Gaussian
distributions of regressors X and Gaussian noise (€) ( s ). We
explored an evenly spaced grid of 100 penalisation A values starting from
0 (no penalisations) to a maximum value that prevents a single regressor
to be included in any of the regressions ( s ). We solved
the regression problem for each gene expression level E; with all E;
(z € {1,...,p},% # j) and haplotypic marker states M as regressors,
using the Least Angle Regression algorithm implemented inthe R glmnet
package ( s ).

Random Forests ( s
trees 7 = (T1,...,Tk), with Y = fr, (X), partially grown at
random using two sources of randomness: (i) each tree is grown using
a random bootstrapped-with-replacement sample of the data (having the
same sample size) and (ii) the variable used at each split node is selected
exclusively from a random subset of all variables (typically of size p/3 for
regression). The computation was performed using the randomForest
R package ( s ). For each regression problem (on E),
the number of trees was set to K = 1, 000 with other parameters kept at

) are collections of non-linear regression

their default value.

Bayesian Networks are directed acyclic graphical (DAG) models that
capture the joint probability distribution over a set of random variables.
All variables (in our case E; and M) are considered as discrete, allowing
us to capture non-linear dependencies between variables. For E;, we used
the bootstrapped expression level discretisation scheme in at most 3 values
proposed by ( ). We applied a score-and-search method
to find (near) optimal DAGs. BDeu ( N
precomputed using gobnilp.® The search method combines the local
search method MINOBS ( s ), followed by the
complete search method elsa ( , ).7 We explored a
grid of 50 values for setting the BDeu parameter A. As in

) scores were

( ), constraints were added to forbid edges from expression levels to
markers (without biological meaning) and edges between markers (useless
information).

Pairwise Exponential Markov Random Fields (PE-MRF) ( s

) are undirected graphical models recently introduced to model
dependencies between different types of data, for example, binary,
categorical, or continuous data. This model generalizes the graphical
Lasso ( s ) to heterogeneous domains. We applied the
PE-MRF approach to the considered dataset with a Gaussian distribution
for the node conditional distribution of variables E; and a categorical
distribution for variables M;. We used a penalisation with an £ /¢2-norm
associated with a A parameter. The values of A were taken in a log-spaced
grid of 100 values from 10~7 to 103. These values were chosen to cover
the two extreme cases where regulations are predicted between all pairs
of genes, and where no regulations are predicted at all. Finally, we extract
a directed graph from PE-MRF as follows: a predicted undirected edge
between two expression levels is transformed into two directed edges and
an undirected edge between a marker and an expression level becomes a
directed edge from the marker to the expression level.

Ordinary Least Square (OLS) are simple linear regression methods that
minimise the sum of squared errors from the data. Dependencies between

5 https://cran.r-project.org/web/packages/glmnet

6 https://www.cs.york.ac.uk/aig/sw/gobnilp v1.6.3. with a limit of 2
parents per variable.

7 https://gkatsi.github.io/elsa-ijcai2 1 .tar.gz with a CPU time limit of 2
minutes (resp. 20min. for measured data), including 10 seconds (resp.
Smin.) for MINOBS.

hybrids genotypes were taken into account via a relatedness kinship matrix.
Edges between expressions and edges from markers to expressions were
inferred separately: (i) tests to discover M; — E; edges between a
target gene expression E; and haplotypic markers M; were computed as
proposed by (
fixed effects; the mean and relatedness kinship matrix were computed as in

( ); (ii) tests to discover E; — E; edges were computed as
Wald statistics. ASRem1-R ( s
components by restricted maximum likelihood (REML) and to compute
Wald statistics.

) for Genome-Wide Association Studies with no

) was used to get variance

Fast Inference of Networks from Directed Regulation (Findr)

( ) performs multiple likelihood ratio tests for causal
inference in the genetical genomic context. We applied it on directed 3-
variable models involving a pair of gene expressions (E;, E;) and the
haplotypic marker M of the first gene. It assumes gene expressions follow
a normal distribution and depend additively on their regulators. It returns
an analytical posterior probability P(E; — Ej;) on every directed edge
E; — Ej,i,5 € {1,...,p}, i # j, which is extremely fast to compute.
We used the £indr R library (pij_gassist function with no diagonal
terms).

3.2 Commensurable Scores

To combine the methods in a meta-analysis we built a commensurable
score. The same approach was used for each method to compute confidence
scores for the predicted directed edges between genes (similar to

( )). The confidence score w;'; corresponds to the relationship
predicted by the method m between the source expression E; of gene
¢ and the target expression £; of gene j. The confidence score u;7;
corresponds to the effect of the allelic state M; on the expression Ej.
We used bootstrapping with B = 50 resampled datasets and considered a
grid A of |A| = 100 values for the regularisation parameter A (JA| = 50
for Bayesian networks). For each bootstrap b and each value of A, we
fitted the different models. The confidence scores were then computed as
follows:

11 &
wij = gmzzaﬁ(b”\)

b=1AeA
11 &
= kST S Ao
B | | b=1 €A

where o’y (b, \) = 1if adirected edge has been predicted from E; to E;
by method m, on bootstrap b, with parameter value A, and O otherwise.
Similarly ,Bl?’]? (b, ) indicates whether an edge has been predicted between
M; and E; or not. Due to their high computing times, bootstraps and A
grid were not used for the OLS method (with kinship matrix inversion).
Instead, its 1 — p-value was used to compute a score. For Random Forests,
its importance score was directly used as the confidence score. For the Findr
method, its posterior probabilities were directly used as the confidence
score which is assumed to be identical between gene and marker predictors
(wlf.m‘" = u{f"dr = P(E; — Ej)). To give more importance to edges
found by both types of data (expression and allelic states), the two types
of scores were combined. However, we did not directly average the two
confidence scores since the distributions of scores for the two types of
edges are different. Instead, the confidence scores were sorted into two
lists of ordered edges for each model. A score between 0 and 1 was given
to each edge depending on its rank in the list.® We then obtained a global
score s;’; of an edge from gene 7 to gene j for method m by averaging the
two scores computed from the ranks of the two lists.

8 Missing edges have score 0. The top-1
min(0.9999, L51), with I the size of the list.

edge has score
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3.3 Meta-Analysis

Meta-analysis carried out by combining different methods is frequently
described as an efficient way to improve results ( s ).
We evaluated the impact of a meta-analysis on the M = 6 tested methods
using the commensurable score previously described, using a Fisher’s
Inverse Chi-Square meta-test ( s ):

M
Sy=1-[]-sm

With S;; the meta-analysis score associated with the directed edge from
gene 7 to gene j, and sg’]? the commensurable score of the edge between
¢ and j obtained by the inference method m, m included in a list of M
methods. S;; varies between 0 and 1. Edges with high scores are those
found by most methods to have a high score.

3.4 Selection of the Number of Directed Edges

With our methodology, each possible edge of the complete directed graph
of p genes has a score. Edges with small scores are consequently not
relevant. In order to select a pertinent number of edges, we considered
networks of varying sizes k € [1,p(p — 1)]. The network of size k is
built by considering k edges according to the top-k scores .S; ;. For each
network we computed the corresponding graph density:

k
nbGenes x (nbGenes — 1)

density =

where nbGenes is the number of genes involved by the top-k edges. The
density curve was smoothed using local polynomial fitting with a kernel
weight ( s ). We then selected the number of edges
corresponding to the minimal density network, for which we observe a
conservative trade-off between having a sparse graph and a few isolated

genes.

4 Results
4.1 Network Inference on Simulated Datasets

We applied inference methods described in Sec. 3 to the 100 simulated
datasets of Sec. 2.2 and compared learnt networks to the reference network.

4.1.1 Efficiency of Inference Methods
The efficiency of the methods was evaluated using precision and recall
scores. The precision is an indicator of how reliable the predictions are.
The recall measures the rate of true edge recovery compared to the full
set of true edges. It indicates how comprehensive the predictions are. The
Precision-Recall (PR) curves of the six network inference methods and
their meta-analysis are shown in Figure 2. We observed that Random
Forest dominates the other single methods at the beginning (with recall
< 20%) and then it is overtaken by Findr. For example, at 75% precision,
OLS was the less efficient method as only 10.5% of edges of the reference
network are found. It is followed by Findr (12.8%), Bayesian Network
(15.3%), Lasso (16%), PE-MRF (16.3%), and Random Forest (17.9%).
Below this 75% precision level, the slopes of PR curves dropped sharply
except for Findr. If we compare the area under PR curves (AUPR score),
Findr obtained a better score (0.298) than Random Forest (0.258), the
worst being OLS (0.189).

Meta-analysis over the six methods gave better results than each
method alone, as precision of 75% for a recall value of 22.7% is obtained,
and an AUPR of 0.349.

4.1.2 Selection of the Number of Edges
We selected the number of edges by applying the approach described in
Section 3.4 using a Gaussian kernel with a bandwidth equal to 5. Figure 3
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Fig. 2. Precision-Recall curves of inference methods on the 100 simulated datasets. Lines
represent the median and shaded areas show the 0.25 and 0.75-quantile limits. Dots on
the meta-analysis curve correspond to top-k edges for k € [50, 200] and the red dot the
graph with minimal density.
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Fig. 3. Density of graphs obtained by the meta-analysis, on the 100 simulated datasets,
depending on the number of selected edges. The minimal density of the smoothed median
(1.055%) is reached for k = 64 edges (red dot, see also Fig. 2).

represents the density plots obtained for the 100 datasets. For each value
of the network size, we computed the median of the density for the 100
simulated datasets and then smoothed the median curve. The obtained
number of edges was 64, corresponding to the smallest density. In the
following, we will consider for each simulated dataset, the network built
from top-64 edges, where on average graphs had 87.5% precision and
17.89% recall for a density of 1.055%.

4.1.3 Description of the Meta-Analysis Network

Global Network Topology. For each of the 100 simulated datasets, a graph
was extracted by keeping the top-64 edges. Networks were composed
of 79 connected genes on average (from 70 to 86), grouped into 19
components on average (from 13 to 27) per graph. The largest component
was composed of 15 genes on average (from 6 to 26).

Specific Motifs. We examined particular motifs such as triangles and
mutual edges that are more likely to be prone to prediction errors. We
observed few predicted triangles, between 0 and 6 per graph (2 on average).
Among the 191 predicted triangles over the 100 graphs, two were correctly
predicted, 151 contained an extra edge, and 38 had mis-orientated edges.
Moreover, the 100 networks contained on average 2 mutual edges (between
0 and 8). In 3% of the graphs, one of the mutual edges was correctly
predicted otherwise, an extra edge was inferred by the inference methods.
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Fig. 5. Out-degree levels of genes in the reference network (dark and light blue dots) and
networks inferred on the 100 simulated datasets (grey dots). Areas in blue correspond to
23 genes belonging to a large strongly connected component of the reference network.

Analysis of Errors According to Topology. False edges were often located
in mutual edges or triangles (47% of errors, Figure 4.A). In the other cases,
for each false edge, we investigated the length of the shortest undirected
path in the reference network between the two endpoint genes. 33% of
remaining errors corresponded to false orientations and 64% to genes that
were only connected by a single intermediate gene in the reference network
(Figure 4.B).

Node Degree. We further compared the out-degree distribution in the
reference and inferred networks. Our top-64 edge selection yields sparse
graphs with very few large hubs (Fig. 5). In the reference network, we
identified a large strongly connected component (23 dark blue nodes in
Figure 1). This relatively-dense subgraph containing 70 edges was poorly
reconstructed by our approach (with 89.7% precision, but only 11.1%
recall on average for the learnt subgraphs induced by the 23 nodes), as
shown by the larger difference in out-degree levels between the reference
and the inferred networks for those genes (Figure 5). By selecting genes
with a median out-degree greater than 3, &~ 19% of the top-16 largest hubs
in the reference network could be detected in the learnt networks and they
do not correspond to the strongly connected component.

4.2 Network Inference on Measured Dataset

As for networks inferred on simulated datasets, we used the minimal graph
density to select 106 top edges corresponding to a graph with minimum

S
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Fig. 6. A. Inferred network on the measured sunflower dataset by the meta-analysis and
minimal density selection of 106 edges. Node size depends on its degree and colour to
the proportion of out-degree. B. Comparison of out-degree distributions of genes in the
measured network (orange dots) with the 100 networks from simulated datasets. Dark grey

area shows the 0.25 and 0.75-quantile limits, light grey area shows extreme values.

density (0.971%) (Supplementary Figure 2). The inferred network was
composed of 105 connected genes grouped in 9 components (Figure 6.A).
The largest component had 74 genes, only one triangle and no mutual edges
were predicted. Regarding node connectivity, the out-degree distributions
were similar for graphs inferred from simulated and measured datasets as
shown in Figure 6.B.

In this use case, our method identified three hub genes, two regulating
5 and 9 genes and the other one conversely regulated by 6 genes, an
actionable result for biological interpretation.

5 Discussion

5.1 Simulation of Gene Expression Datasets for Hybrid
Genotypes

To simulate more realistic gene expression datasets compatible with the
larger genetic variability and heterozygosity observed in wild populations
and genetic resources, we improved the SysGenSim simulator at the
genetic level. First, since gene expressions are subject to heterosis
effects ( )
of each allele in the simulator to simulate this phenomenon. Secondly,
the different parameters of the simulator were adjusted to have the

), we implemented a dominance or additive effect

same heritability in the measured and simulated datasets. Concerning
the topology, we note that whole-genome duplications lead to numerous
paralog genes such as observed in the sunflower genome ( s

), which will differentiate and display different expression patterns.
To take this into account, we integrated artificial paralogous genes with
the same regulators and regulated genes. SysGenSim allowed setting
different biological parameters (basal level, regulation strength, etc.) for
the two paralogs and can thereby lead to different expression levels,
which is in accordance with observed real datasets. Moreover, real
networks have a modular structure with some dense component parts
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and we successfully included this complexity of biological networks in
our reference network (e.g., the presence of a large strongly connected
component). These improvements allowed us to simulate gene expression
datasets with properties very similar to measured ones. In the future, a
challenge would be to introduce higher genetic variability, i.e. having
more than two possible haplotypes per gene.

5.2 Comparison of Inference Methods

Six different inference methods were tested on simulated datasets, each
of them having its own specificity. For example, Findr and PE-MRF
could handle together continuous (as expression levels) and discrete (as
SNPs) data with different distribution assumptions. Lasso and Random
Forest considered both data as continuous whereas Bayesian networks
considered them as discrete. All the methods used both data together
except for OLS that ran them separately. OLS was the only tested
method taking into account the dependencies between genotypes via a
kinship matrix. However, results from OLS were inferior possibly due to
the lack of bootstraps. As expected, the meta-analysis achieved greater
efficiency than each method taken individually. Concerning computation
time and resources, Findr, Lasso, and Random Forest ran in less than 2
minutes per simulated dataset on a personal computer. OLS took longer,
around 2 hours on a server and required commercial software (ASReml).
Bayesian networks and PE-MRF were the most demanding approaches
taking hours on a 20-CPU Xeon 3GHz server. The meta-analysis could
be run on a personal computer within a few minutes. For cases where
computing resources may be limited or the number of genes too high,
it could be interesting to consider only the fastest methods for the meta-
analysis (Lasso, Random Forest and Findr). For example, on our simulated
datasets, the recall for 75% precision, was similar: 22.0% with the light
meta-analysis, compared to 22.7% with the complete one (Supplementary
Figure 3). We compared our approach with results from previous studies
( , ; , ; , ;
s ) using one artificial dataset provided by the
DREAMS Systems Genetics Challenge. This is composed of expression
measures for 1,000 genes, on 999 individuals with no dependencies
among them, a modular scale-free network with 2, 048 edges (Networkl),
and homozygous markers. Due to the size of the problem, we applied
the light meta-analysis version and found an AUPR score of 0.65 and
selected 607 edges with the smallest density criteria (Supplementary
Figures 4 and 5). This is clearly superior to another similar meta-analysis
approach based on three methods (Bayesian network, Lasso and Dantzig
selector ( R )) that found an AUPR score of 0.482 (
s ), to Findr 0.547 (Table S1 in ( ),
and GENIE3-SG-sep(product) 0.58 ( s
much smaller but more realistic simulated datasets, we found an AUPR

). On our

of 0.349 with our complete meta-analysis strategy. Therefore, we believe
our simulated datasets constitute a challenging benchmark for the Systems
Biology community.

5.3 Characterisation of Obtained Networks

By selecting the minimal density network, inferred networks were always
sparse. Thus, the highly connected parts of the network were difficult
to identify. Having a sparse graph may be an advantage if we try to
identify peripheral genes that can indirectly modulate a target phenotype,
e.g., the resistance of sunflower to drought in our case, through a chain
of regulations towards highly connected key genes ( , ).
In addition, by minimizing the density of the network, we performed
a very stringent procedure and selected a reduced number of edges but
with a higher probability of correctness. With this procedure, we noticed
that predicted motifs such as triangles or mutual edges were still prone
to errors and represented half of the false edges. Other errors consisted

mainly of wrong orientations or were likely due to a missing intermediate
gene. Similar results are expected on measured datasets. When analysing
and validating a newly inferred network, we recommend the following
guidelines: (i) when triangles or mutual edges are predicted, a specific
validation step must be included since one edge is probably false; (ii) when
an edge is in contradiction with literature, it could be due to an orientation
error; (iii) when experimental data cannot validate a direct interaction
between the product of a gene and the gene it regulates, it could be due to
the lack of an intermediate actor; (iv) interaction between two genes can
be experimentally demonstrated even if an edge is not present in the graph
since many edges are not predicted.

5.4 Application on a Measured Dataset

For our measured dataset, the number of genes was slightly higher (173
instead of 143) and the number of measured hybrid genotypes was
lower (353 versus 463) than for our simulated datasets. Following our
density minimization procedure, we selected 106 edges (only 64 for
simulated datasets). This variation of size can be explained by different
factors: evolutionary differences between sunflower and model plants
used to develop the reference dataset, reduction of genetic diversity
and/or modelling hypotheses on allelic and gene expression effects in
the simulation model. Importantly, the resulting network serves as
a working hypothesis for biologists. For example, one of the major
regulatory genes found, HanXRQChr16g0529981, is homologous to the
NMD3 gene in the plant model A.thaliana and found more abundant
in cold (physiologically related to drought) condition for this plant
( s ). The most regulated gene found in our network,
HanXRQChr02g0058891, is a TF involved in seed oil content in Brassica
) and shows an interaction with the abiotic
stress genes in A.thaliana ( s

napus ( s
). These genes
could be good new candidates for future studies on abiotic stress of
H.annuus with prior knowledge of molecular and epistatic interactors.
Beside the scope of this methodological article, future challenges will
consist in increasing the dataset dimensions, i.e. more genes, performing
a complete functional study including GO analysis, colocalisation with
drought response controling QTL ( s ), and testing
network robustness in the context of heterozygocity.

6 Conclusion

To choose an inference method adapted to our biological context, we
created artificial datasets with realistic biological properties. To build
such artificial datasets, our approach was carried out in four steps: (i)
build a reference network based on available biological information; (ii)
create artificial haplotypes based on genomic information available for
the hybrid genotypes; (iii) choose and adapt a gene expression simulator
and (iv) adjust the simulator parameters based on a comparison of the
heritability score obtained on measured and simulated datasets. We believe
that this approach can be easily adapted to other biological experiments
and genetic data to build artificial datasets with other biological properties.
This approach allowed us to choose a meta-analysis strategy based on
six inference methods adapted to our datasets that was completed by a
novel strategy to select the minimal density network. The resulting learnt
networks are very sparse, which should favor precision at the expense
of recall and the inherent difficulty to detect large hubs. Therefore, this
methodology is directly applicable to other gene expression datasets of
similar sizes, combined or not with genotypic information.
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