
Article

Guaranteed Diversity and Optimality in Cost Function
Network Based Computational Protein Design Methods†

Manon Ruffini1, Jelena Vucinic2, Simon de Givry1, George Katsirelos3, Sophie Barbe2, Thomas Schiex1,*

Citation: Ruffini M; Vucinic J; de

Givry S; Katsirelos G; Barbe S.;

Schiex T Guaranted Diversity and

Optimality for Computational

Protein Design. Algorithms 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Algorithms for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Université Fédérale de Toulouse, ANITI, INRAE, UR 875, Toulouse, France
2 TBI, Université de Toulouse, CNRS, INRAE, INSA, ANITI, Toulouse, France
3 MIA-Paris - Mathématiques et Informatique Appliquées, INRAE, Paris, France
* Correspondence: thomas.schiex@inrae.fr
† This paper is an extended version of our paper published in the Proceedings of the 2019 IEEE 31st

International Conference on Tools with Artificial Intelligence, Portland, OR, USA, 4-6 Nov. 2019.

Abstract: Proteins are the main active molecules of Life. While natural proteins play many roles, as1

enzymes or antibodies for example, there is a need to go beyond the repertoire of natural proteins2

to produce engineered proteins that precisely meet application requirements, in terms of function,3

stability, activity or other protein capacities. Computational Protein Design aims at designing new4

proteins from first principles, using full-atom molecular models. However, the size and complexity5

of proteins require approximations to make them amenable to energetic optimization queries.6

These approximations make the design process less reliable and a provable optimal solution may7

fail. In practice, expensive libraries of solutions are therefore generated and tested. In this paper,8

we explore the idea of generating libraries of provably diverse low energy solutions by extending9

Cost Function Network algorithms with dedicated automaton-based diversity constraints on a10

large set of realistic full protein redesign problems. We observe that it is possible to generate11

provably diverse libraries in reasonable time and that the produced libraries do enhance the Native12

Sequence Recovery, a traditional measure of design methods reliability.13

Keywords: Computational Protein Design; Graphical Models; Automata; Cost Function Networks;14

Structural Biology; Diversity.15

1. Introduction16

Proteins are complex molecules that govern much of how cells work, in humans,17

plants, and microbes. They are made of a succession of simple molecules called α-18

amino acids. All α-amino acids share a common constant linear body and a variable19

side-chain. The side-chain defines the nature of the amino acid. There are 20 natural20

amino acid types, each having a distinct side-chain offering specific physico-chemical21

properties. In a protein, the successive amino acids are connected one to the other by22

peptidic bonds, defining a long linear polymer called the protein backbone. In solution,23

most proteins fold into a 3D shape, determined by the physico-chemical properties24

of their amino acid side-chains. Because of their large variety of functions, and their25

potentials for applications in medicine, environment, biofuels, green chemistry, etc,26

new protein sequences are sought, that present desired new or enhanced properties27

and functions. As function is closely related to three-dimensional (3D) structure [1],28

Computational Protein Design (CPD) methods aim at finding a sequence that folds into29

a target 3D structure, that corresponds to the desired properties and functions. A general30

formulation of this problem being highly intractable, simplifying assumptions have been31

made (see Figure 1): the target protein structure (or backbone) is often assumed to be32

rigid, the continuous space of flexibility of amino acids side-chains is represented as33

a discrete set of conformations called rotamers and the atomic forces that control the34

protein stability are represented as a decomposable energy function, defined as the sum35

Version May 28, 2021 submitted to Algorithms https://www.mdpi.com/journal/algorithms

https://www.mdpi.com
https://doi.org/10.3390/a1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms

Version May 28, 2021 submitted to Algorithms 2 of 27

of terms involving at most two bodies (amino acids). The problem of design is then36

reduced to a purely discrete optimization problem: given a rigid backbone, one must37

find a combination of discrete side-chain natures and conformations (rotamers) that38

minimizes the energy. The resulting sequence and associated side-chain conformations39

define the Global Minimum Energy Conformation (GMEC) for the target backbone.40

A rotamer library for all 20 natural amino acids containing typically few hundreds of41

conformations, the discrete search space becomes very quickly challenging to explore42

and the problem has been shown to be NP-hard [2] (decision NP-complete). It has43

been naturally approached by stochastic optimization techniques such as Monte Carlo44

simulated annealing [3], as in the commonly used Rosetta software [4]. Such stochastic45

methods offer only asymptotic optimality guarantees. Another possible approach is46

to use provable optimization techniques, that instead offer finite-time deterministic47

guarantees. In the last decade, Constraint programming-based algorithms for solving48

the Weighted Constraint Satisfaction Problem (WCSP) on Cost Function Networks49

(CFN) have been proposed to tackle CPD instances [5,6]. These provable methods have50

shown unprecedented efficiency at optimizing decomposable force fields on genuine51

protein design instances [6], leading to successfully characterized new proteins [7]. Cost52

Function Networks are one example of a larger family of mathematical models that aim53

at representing and analyzing decomposable functions, called Graphical Models [8,9].54

Even if provable methods definitely remove the possibility of failed optimization,55

they cannot fight the simplifying assumptions that appear in the CPD problem formula-56

tion. First, the optimized pairwise decomposed energetic criterion only approximates57

the actual molecule energy. Then, the rigid backbone and discrete-chain conformations58

ignore the actual continuous protein flexibility [10]. Ultimately, even with a perfect59

energy function, an alternative backbone structure may well exist that gives the GMEC60

sequence an even better energy. This usually requires expensive post-hoc filtering based61

on structure prediction (forward folding [11]). Therefore, even with provable methods, a62

library of highly relevant mutants is usually produced for further experimental testing,63

with the hope that the probability of identifying a functional protein will be increased.64

Provable Branch and Bound-based WCSP algorithms have the native ability of enumer-65

ating solutions within a threshold of the optimal solution. Empirically, one can observe66

that the set of sequences that lie within this threshold grows very quickly in size with67

the energy threshold, but is mostly composed of sequences that are very similar to the68

optimal GMEC sequence. Ideally, a design library should be a set of low energy but69

also diverse solutions. With yeast-display capacity to simultaneously express and test70

thousands of proteins, libraries of diversified designs become increasingly important.71

The hope is that sequence diversity will improve the likelihood that a protein endowed72

of desired function is found. In this paper, we are therefore interested in algorithmic73

methods that can provide such a set of guaranteed diverse low energy solutions and74

then to empirically check if enforcing diversity in a library while optimizing energy does75

improve the protein design process.76

Because of their important applications, protein sequences can be subject to patents.77

Ideally, a newly designed sequence should satisfy a minimum Hamming distance con-78

straint to existing patented sequences. Specific design targets may require to escape79

known patterns such as, e.g., antigenic sub-sequences that would be recognized by80

the Major Histocompatibility Complexes [12]. This again raises the need to produce81

sequences satisfying minimum distance requirement to given sequences. Finally, CPD82

input structures often come from existing, experimentally resolved natural (or native)83

proteins. In this case, a native sequence exists, that has usually acquired desirable prop-84

erties following the billions of years of natural evolution and optimization it has been85

through. In many cases, to avoid disrupting the native protein properties (e.g. catalytic86

capacities), the protein designer may want to bound the maximum number of mutations87

introduced in the design. This raises the need to produce sequences satisfying maximum88

distance requirement to given sequences.89

Version May 28, 2021 submitted to Algorithms 3 of 27

In this paper, given an initial rigid backbone, we consider the problem of producing90

a set of diverse low energy sequences that also provably satisfy a set of minimum and91

maximum distance requirements w.r.t. given sequences. We observe that, beyond struc-92

tural biology and bioinformatics, this problem of producing a set of diverse solutions93

of a Graphical Model has been considered by many authors, either on discrete Boolean94

Graphical Models such as Constraint Networks (used in Constraint Programming), or95

on stochastic graphical models such as Markov Random Fields. While this shows that96

the interest for the problem of diverse solutions generation goes well beyond Compu-97

tational Protein Design, we observe that these approaches either offer no guarantee,98

or are limited to specific tractable sub-classes of functions, such as sub-modular func-99

tions [13]. Our approach instead relies on the reduction of distance requirements to100

discrete automaton-based constraints that can be decomposed and compressed into101

three-bodies (ternary) or two-bodies (binary) terms, using suitable dual and hidden102

encoding [14,15]. These constraints can then be processed natively by existing WCSP103

algorithms. While our approach is general and generally applicable to the production of104

libraries of solutions of arbitrary discrete graphical models, its design is motivated by105

Computation Protein Design. We therefore empirically evaluate this approach for the106

generation of a library of diverse sequences on a set of protein design problems. We first107

observe that this approach is capable of producing provably diverse sets of solutions on108

Computational Protein Design problems of realistic sizes in reasonable time. Going back109

to our initial aim, we also observe that sufficiently diverse libraries do offer better Native110

Sequence Recovery rates (NSR), a usual metric for protein design methods evaluation111

that measures how well it is able to reproduce Nature’s optimization.112

2. Computational Protein Design113

A CPD instance is first composed of an input target 3D structure, defined by the114

Cartesian coordinates of all the atoms in the protein backbone. The target protein struc-115

ture can come from an existing protein backbone, that was determined experimentally116

on an existing protein; or from a model that can be derived from existing 3D structures117

of similar proteins; or from a completely new structure, as it is done in de novo design.118

Once a backbone has been chosen, the design space must be fixed. One may choose to do119

a full redesign, where the amino acids at all positions of the protein can be changed, or120

redesign only a subset of all positions, focusing on positions that are key for the targeted121

function. Overall, each position in the protein sequence will be set by the designer122

as either fixed, flexible, or mutable. If the position is fixed, the side-chain is fixed and123

rigid: the amino acid type and orientation are determined in the input target structure.124

If the position is flexible, the residue type is fixed to the amino acid type of the input125

structure, but the side-chain might adopt several conformations in space. If the position126

is mutable, all or a restricted set of amino acid types are allowed at the position, along127

with different conformations of their side-chain. Because of the supposed rigidity of the128

backbone, the sequence-conformation search space is therefore characterized by two129

decision levels: the sequence space, which corresponds to all the possible sequences s130

enabled by the mutable positions, and the conformation space, which must be searched131

to identify the best side-chain conformation at each flexible or mutable position. The132

possible conformations, or rotamers, for each amino acid are indexed in rotamer libraries,133

such as the Dunbrack [16] or the Penultimate libraries [17]. Each library gathers a finite134

set of conformations, capturing a representative subset of all frequently adopted con-135

formations in experimentally determined structures. In the Rosetta design software [4],136

that relies on the Dunbrack library, a fully mutable position will be typically associated137

with around 400 possible rotamers. Designing a 10-residue peptide actually requires the138

exploration of 40010 ≈ 1026 conformations.139

Given a backbone structure and a rotamer library, the CPD problem seeks a stable
and functional sequence-conformation. The protein functionality is assumed to result
from its conformation and its stability is captured by an energy function E, that allows

Version May 28, 2021 submitted to Algorithms 4 of 27

Figure 1. An example of two protein sequences (top) where two mutable amino acids have been
redesigned. A the first position, the amino acid D (an aspartic acid) has been changed to a L
(leucine), in a specific conformation (orientation). At the second position, the arginine R, with
its very long and flexible side chain has been changed to a glutamine Q. The figure on the right
illustrates the potential flexibility of the long arginine side chain, showing a sample of several
possible superimposed conformations, representing a fraction of all possible conformations for an
arginine side chain in existing rotamer libraries.

to compute the energy of any sequence-conformations on the target backbone. The
task at hand is the minimization of this energy function. The optimal sequence is the
best possible choice for the target rigid backbone. To model the energy, score functions
are used. They can be physics-based, as the energetic force fields AMBER [18] and
CHARMM [19]. They capture various atomic interactions including bond and torsion
angle potentials, van der Waals potentials, electrostatic interactions, hydrogen bonds
forces and entropic solvent effects. Score functions may also be enriched by “knowledge-
based” energy terms, that result from the statistical analysis of known protein structures.
For instance, Rosetta ref2015 and beta_nov_16 score functions [4,20] also integrate
rotamer log-probabilities of apparition in natural structures, as provided in the Dunbrack
library, in a specific energy term. To be optimized, the energy function should be easy to
compute while remaining as accurate as possible, so as to predict relevant sequences.
To try to meet these requirements, additive pairwise decomposable approximations of the
energy have been chosen for protein design approaches [6,21]. The decomposable energy
E of a sequence-conformation r = (r1, . . . , rn) where ri is the rotamer used at the position
i in the protein sequence can be written as:

E(r) = E∅ + ∑
16i6n

Ei(ri) + ∑
16i<j6n

Eij(ri, rj)

The term E∅ is a constant that captures interactions within the rigid backbone. For140

1 6 i 6 n, the unary (or one body) terms Ei capture the interactions between the rotamer141

ri at position i and the backbone, as well as interactions internal to the rotamer ri. For142

1 6 i < j 6 n, the binary terms Eij capture the interactions between rotamers ri and143

rj at positions i and j respectively. These energy terms only vary with the rotamers,144

thanks to the rigid backbone assumption. Protein design dedicated software, such as145

OSPREY [22] or Rosetta [4], compute all the constant, unary, and binary energy terms, for146

each rotamer and combination of rotamers, for each position and pair of positions. While147

this requires quadratic time in the protein length in the worst-case, distance-cutoffs148

make these computations essentially linear in this length. Once computed, these values149

are stored in energy matrices. During the exploration of the sequence-conformation150

space, conformation energies can be efficiently computed by summing the relevant151

energy terms fetched from the energy matrix. CPD methods aim at finding the optimum152

Version May 28, 2021 submitted to Algorithms 5 of 27

conformation, called the global minimum energy conformation (GMEC). Despite all these153

simplifications, this problem remains decision NP-complete [23].154

3. CPD as a Weighted Constraint Satisfaction Problem155

A Cost Function Network (CFN) C is a mathematical model that aims at representing
functions of many discrete variables that decompose as a sum of simple functions (with
small arity or concise representation). It is a member of a larger family of mathematical
models called graphical models [9], that all rely on multivariate function decomposability.
A CFN is defined as a triple C = (X, D, C) where X = (X1, . . . , Xn) is a set of variables,
D = (D1, . . . , Dn) is a set of finite domains, and C is a set of cost functions. Each variable
Xi takes its values in the domain Di. Each cost function cS ∈ C is a non negative integer
function that depends on the variables in S, called the scope of the function. Given a set
of variables S ⊂ X, the set DS ∏Xi∈S Di denotes the Cartesian product of the domains
of the variables in S. For a tuple t ∈ Y, with S ⊂ Y ⊂ X, the tuple t[S] denotes the
projection of t over the variables of S. A cost function cS ∈ C maps tuples of DS to
integer costs in {0, . . . ,>}. In this paper, we assume, as is usual in most graphical
models, that the default representation of a cost function cS is a multidimensional cost
table (or tensor) that contains the cost of every possible assignment of the variables in its
scope. This representation requires space that grows exponentially in the cost function
arity |S| which explains why arity is often assumed to be at most two. The joint function
is defined as the bounded sum of all cost functions in C:

CC : DX −→ {0, . . . ,>}
t 7−→ ∑ >cS∈C cS(t[S])

where the bounded sum +> is defined with a +> b = min(a + b,>). The maximum
cost > ∈ N∪ {+∞} is used for forbidden partial assignments and represents a sort of
infinite or unbearable cost. Cost functions that take their values in {0,>} represent
hard constraints. The Weighted Constraint Satisfaction Problem consists of finding the
assignment of all the variables in X with minimum cost:

t∗ = min
t∈DX

CC(t) = min
t∈DX

∑
cS∈C

cS(t[S])

Notice that when the maximum cost > = 1, the cost function network becomes a156

constraint network [24], where cost functions encode only constraints. Tuples that are157

assigned cost 0 are valid, i.e., they satisfy the constraint, and tuples that are assigned158

cost 1 = > are forbidden. The Constraint Satisfaction Problem then consists of finding a159

satisfying assignment, one that satisfies all the constraints.160

Graphical models also encompass stochastic networks, such as discrete Markov
Random Fields (MRF) and Bayesian Nets [25]. A discrete Markov Random Field is a
graphical modelM = (X, D, Φ) where X = (X1, . . . , Xn) is a set of random variables,
D = (D1, . . . , Dn) is a set of finite domains, and Φ is a set of potential functions. A
potential function ϕS maps DS to [0,+∞]. The joint potential function is defined as:

P = ΦM : DX −→ [0,+∞]
t 7−→ ∏ϕS∈Φ ϕS(t[S])

Instead of the sum used to combine functions in Cost Function Networks, the product161

is used here. The normalization of the potential function P by the partition function162

Z = ∑t∈DX
P(t) defines the probability function p = 1

Z P of the MRF. The Maximum A163

Posteriori probability corresponds to the assignment with maximum probability (and164

maximum potential) maxt p(t).165

MRF can also be expressed using additive energy functions es ∈ E, a logarithmic166

transformation eS = − log ϕS of the potential functions. The potential function is then167

an exponential of the energy P(t) = exp
(
−∑eS∈E eS

)
. While potential functions are168

Version May 28, 2021 submitted to Algorithms 6 of 27

multiplied together, energies simply add up. Therefore, Cost function networks are169

closely related to the energetic expression of Markov random fields. The main difference170

lies in the the fact that CFNs deal with non negative integers only, whereas MRF energies171

are real numbers. If > = +∞, a CFN can be transformed into an MRF through an172

exponential transformation, and given a precision factor, an MRF can be transformed173

into a CFN through a log transform. Zero potentials are mapped to cost> and minimum174

energy means maximum probability.175

Given a cost function network, the weighted constraint satisfaction problem can176

be answered by the exploration of a search tree in which nodes are CFNs induced177

by conditioning, i.e., domain reductions on the initial network. A Branch-and-Bound178

strategy is used to explore the search tree, that relies on a lower bound on the optimum179

assignment cost in the current sub-tree. If the lower bound is higher than the best180

joint cost found so far, it means that no better solution is to be found in the subtree,181

and it can be pruned. Each time a new solution is found, the maximum cost > is182

updated to the corresponding cost, as we are only interested in finding solutions with183

lower cost. Ordering strategies are crucial and can lead to huge improvement in the184

empirical computation time: decisions should be made, that lead to low cost solutions185

(and decrease the maximum cost >) and that enable early pruning.186

The efficiency of the branch-and-bound strategy relies on strength of the lower187

bound on solution costs. In CFNs, since cost functions are non-negative, the empty-188

scoped cost function c∅ provides a naive lower bound on the optimum cost. To efficiently189

compute tight lower bounds, local reasoning strategies are used, that aim at pushing190

as much cost as possible in the constant cost c∅, for better pruning. They are based on191

equivalence preserving transformations that perform cost transfers between cost functions,192

while maintaining the solutions’ joint costs unchanged [26], i.e., the joint cost function is193

preserved (these operations are called reparameterizations in MRFs). Specific sequences194

of equivalence preserving transformations can be applied to a CFN to improve the lower195

bound c∅ until a specific target property is reached on the CFN. These properties, called196

local consistencies, aim at creating zero costs, while improving c∅. These sequences of197

operations should converge to a fixpoint (closure). Various local consistency properties198

have been introduced, as node consistency, arc consistency, full directional arc consis-199

tency, existential directional arc consistency, or virtual arc consistency [26]. For binary200

CFNs, that involve functions of arity at most two, these properties can be enforced in201

polynomial time in the size of the network. Among these, Virtual arc consistency has202

been shown to solve the WCSP on networks composed of submodular functions [27].203

Note however that the complexity of local consistency enforcing remains exponential in204

the arity of the cost functions (as is the size of the corresponding tensors).205

Sometimes, one may need to include specific functions with a large scope in the206

description of the joint function. Because of the exponential size of the tensor description,207

these global cost functions must be represented with dedicated concise descriptions and208

require dedicated algorithms for local consistency propagation. More formally, a global209

cost function, denoted GCF(S,A), is a family of cost functions, with scope S and possible210

parameters A. A global cost function is said to be tractable when its minimum can be211

computed in polynomial time.212

The CFN formulation of computational protein design is straightforward [5,6,28,29]
(see Figure 2): given a CPD instance with pairwise decomposable energy function
E = E∅ + ∑16i6n Ei + ∑16i<j6n Eij, let C = (X, D, C) be a cost function network with
variables X = (X1, . . . , Xn), with one variable Xi for each flexible or mutable position i
in the protein sequence, domains D = (D1, . . . , Dn) where the domain Di of the variable
Xi consists of the available rotamers at position i, i.e., the amino acid types and their
side-chain conformations. The cost functions are the empty-scoped, unary and binary
energy terms:

C = { E∅} ∪
{

Ei, 1 6 i 6 n
}
∪
{

Eij, 1 6 i < j 6 n
}

Version May 28, 2021 submitted to Algorithms 7 of 27

Figure 2. Input backbone and cost function network representation of a corresponding CPD
instance with 6 mutable or flexible residues.

Energy terms, which are floating point numbers, are transformed into non-negative213

integer values by being shifted by a constant, multiplied by a large precision factor, and214

having their residual decimal truncated.215

In this encoding, variables represent rotamers, combining information on the nature216

and the geometry (conformation) of the side-chain. In practice, it is often useful to217

add extra variables that represent the sequence information alone. The CFN C can be218

transformed into C ′ = (X′, D′, C ′), that embeds sequence variables, as follows:219

Variables We add sequence variables to the network: X′ = Xseq ∪ X, where Xseq =220 {
Xseq

i | Xi ∈ X
}

. The value of Xseq
i represents the amino acid type of the rotamer221

value of Xi.222

Domains D = Dseq ∪D where Dseq = {Dseq
i | Di ∈ D} where the domain Dseq

i of Xseq
i223

is the set of available amino acid types at position i.224

Constraints The new set of cost functions C′ is made of the initial functions C; and225

sequence constraints, that ensure that Xseq
i is the amino acid type of rotamer Xi.226

Such a function cXi ,X
seq
i

just forbids (map to cost >) pairs of values (r, a) where the227

amino acid identity of rotamer r does not match a. All other pairs are mapped to228

cost 0.229

Such sequence variables depend functionally on the rotamer variables. They do not230

modify the search space and merely offer a facility to define properties on the protein231

sequence, if needed, as will be the case here.232

4. Diversity and Optimality233

In this section, we assume that we have a CFN C = (X, D, C) and we want to234

express diversity requirements on the values taken by variables in S ⊂ X. In the case of235

CPD, these variables will be the previously introduced sequence variables.236

4.1. Measuring diversity237

The task at hand is the production of a set of diverse and low cost solutions of C. First,238

we need a measure of diversity between pairs of solutions, and among sets of solutions.239

The simplest diversity measure between pairs of solutions is the Hamming distance,240

defined hereafter. It counts the number of variables in S that take different values in two241

solutions. In the CPD framework, sequence variables represent amino acid identities:242

the Hamming distance measures the number of introduced mutations (or substitutions),243

a very usual notion in protein engineering.244

Version May 28, 2021 submitted to Algorithms 8 of 27

Definition 1. Given a set of variables S ⊂ X and two assignments t and t′ ∈ DS, the
Hamming distance between t and t′ is defined as follows:

dH(t, t′) = ∑
Xi∈S

1(t[Xi] 6= t′[Xi]
)

The Hamming distance can be generalized to take into account dissimilarity scores245

between values. The resulting distance is a semi-metric, defined as a sum of variable-wise246

dissimilarities, as follows:247

Definition 2. Given a zero-diagonal symmetric positive matrix D, that defines value dissimilar-
ities, and two assignments t, t′ ∈ DS, the weighted-Hamming distance between t and t′ is
defined as:

dD(t, t′) = ∑
Xi∈S

D
(
t[Xi], t′[Xi]

)
In computational biology, protein sequences are often compared using dedicated248

similarity matrices, such as the BLOSUM62 matrix [30]. A protein similarity matrix S249

can be transformed into a dissimilarity matrix D such that Di,j = (Si,i + Sj,j)/2− Si,j.250

Definition 3. Given a set Z of solutions, we define:251

• its average dissimilarity: d̄(Z) =
2

|Z|(|Z| − 1) ∑
t 6=t′∈Z

d(t, t′)252

• its minimum dissimilarity: ď(Z) = min
t 6=t′∈Z

d(t, t′)253

We are aiming at producing a library of solutions that is guaranteed to be diverse.254

The average dissimilarity does not match this need: a set of solutions might have a satisfy-255

ing average dissimilarity value, with several occurrences of the same assignment, and256

one or a few very dissimilar ones. So, to guarantee diversity, the minimum dissimilarity257

will be the diversity measure used throughout this paper.258

So, producing a set of diverse solutions requires that all solution pairs have their259

distance above a given threshold. This can be encoded in cost functions representing260

constraints, taking their values in {0,>} only:261

Definition 4. Given two sets of variables S, S′ of the same cardinality, a dissimilarity matrix D
and a diversity threshold δ, we define the global cost function:

DIST(S, S′, D, δ) : DS ×DS′ −→ {0,>}

(t, t′) 7−→
{

0 if sign(δ).d(t, t′) > δ
> otherwise.

Allowing both positive and negative threshold δ allows the DIST cost function
to express either minimum or maximum diversity constraints. When δ > 0, the cost
function expresses a minimum dissimilarity requirement between the assignments t and
t′:

DIST(t, t′, D, δ) = 0⇔ d(t, t′) > δ

If δ < 0, the cost function represents the fact that t and t′ must be similar, with a
dissimilarity lower than the absolute value of δ:

DIST(t, t′, D, δ) = 0⇔ −d(t, t′) > δ⇔ d(t, t′) 6 −δ = |δ|

If needed, both maximum and minimum requirements can be imposed using two262

constraints.263

Version May 28, 2021 submitted to Algorithms 9 of 27

4.2. Diversity given sequences of interest264

In the CPD context, minimum and maximum distance requirements with known265

sequences may be useful in practice in at least two situations.266

• A native functional sequence snat is known for the target backbone. The designer267

wants that less than δnat mutations be introduced on some sensitive region of the268

native protein, in order to avoid disrupting a crucial protein property.269

• A patented sequence spat exists for the same function, and sequences with more270

than δpat mutations are required for the designed sequence to be usable without271

requiring a license.272

The distance here is the Hamming distance based on matrix H which equals 1273

everywhere, except for its zero diagonal. Using sequence variables, the following274

diversity constraint-encoding cost functions need to be added to the CFN model:275

• DIST(Xseq, snat, H,−δnat)276

• DIST(Xseq, spat, H, δpat)277

4.3. Sets of diverse and good quality solutions278

The problem of producing a set of diverse and good quality solutions, i.e., such that279

all pairs of solutions satisfy the diversity constraint, and the solutions have minimum280

cost, can be expressed as follows:281

Definition 5 (DIVERSESET). Given a dissimilarity matrix D, an integer M and a dissimilarity282

threshold δ, the problem DIVERSESET(C, D, M, δ) consists in producing a set Z of M solutions283

of C such that:284

Diversity For all t 6= t′ ∈ Z, d(t, t′) > δ, i.e., DIST(t, t′, D, δ) = 0.285

Quality The solutions have minimum cost, i.e. ∑ >

t∈Z
CC(t) is minimum.286

For a CFN C with n variables, solving DIVERSESET requires to simultaneously287

decide the value of nM variables. It can be solved by making M copies of C with variable288

sets X1 to XM and adding
M.(M− 1)

2
constraints DIST(Xi, X j, D, δ) for all 1 6 i < j 6 M.289

If the upper bound > is finite, all its occurrences must be replaced by M.(>− 1) + 1.290

While very elegant, this approach yields a CFN instance where the number of variables291

is multiplied by the number of wanted solutions. The WCSP and CPD problems being292

NP-hard, one can expect that the resulting model will be quickly challenging to solve.293

We empirically confirmed this on very tiny instances: we tested it on problems with 20294

variables and maximum domain size bounded by six, asking for just for four 15-diverse295

solutions. This elegant approach took more than 23 hours to produce 4 solutions. We296

therefore decided to solve a relaxed version of DIVERSESET : an iterative algorithm297

provides a greedy approximation of the problem that preserves most of the required298

guarantees. Using this approach, the problem of producing four 15-diverse solutions of299

the above tiny problem takes just 0.28 seconds.300

Definition 6 (DIVERSESEQ). Given a dissimilarity matrix D, an integer M and a dissimilarity301

threshold δ, the set of assignments Z of DIVERSESEQ(C, D, M, δ) is built recursively:302

• The first solution Z[1] is the optimum of C303

• When solutions Z[1..(i− 1)] are computed, Z[i] is such that:304

for all 1 6 j < i, DIST(Z[i], Z[j], D, δ) = 0 and Z[i] has minimum cost.305

That is, Z[i] is the minimum cost solution, among assignments that are at distance at least306

δ from all the previously computed solutions.307

The set of solutions DIVERSESEQ requires to optimally assign n variables M times,308

instead of the n.M variables. Given the NP-hardness of the WCSP, solving DIVERSESEQ309

Version May 28, 2021 submitted to Algorithms 10 of 27

may be exponentially faster than DIVERSESET while still providing guarantees that dis-310

tance constraints are satisfied together with a weakened form of optimality, conditional311

on the solutions found in previous iterations. The solution set is still guaranteed to312

contain the GMEC (the first solution produced).313

5. Relation with existing work314

In the case of Boolean functions (> = 1), the work of [31] considers the optimization315

of the solution set cardinality M or the diversity threshold δ using average or minimum316

dissimilarity. The authors prove that enforcing Arc Consistency on a constraint requiring317

sufficient average dissimilarity d̄ is polynomial but NP-complete for minimum dissim-318

ilarity ď. They evaluate an algorithm for incremental production of a set maximizing319

d̄. The papers [32] and [33] later addressed the same problems using global constraints320

and knowledge compilation techniques. Being purely Boolean, these approaches cannot321

directly capture cost (or energy) which is crucial for CPD. More recently, [34] proposed a322

Constraint Optimization Problem approach to provide diverse high-quality solutions.323

Their approach however trades diversity for quality while diversity is a requirement in324

our case.325

The idea of producing diverse solutions has also been explored in the more closely326

related area of discrete stochastic Graphical Models (such as Markov Random Fields).327

In the paper of Batra et al. [35], the Lagrangian relaxation of minimum dissimilarity328

constraints is shown to add only unary cost functions to the model. This approach329

can be adapted to cost function networks, but a non zero duality gap remains and330

ultimately, no guarantee can be offered. This work was extended in [36] using higher-331

order functions to approximately optimize a trade-off between diversity and quality. More332

recently, [37] addressed the DIVERSESET problem, but using optimization techniques333

that either provide no guarantee or are restricted to tractable variants of the WCSP334

problem, defined by submodular functions [13].335

In the end, we observe that none of these approaches simultaneously provides336

guarantees on quality and diversity. Closest to our target, [38] considered the problem337

of incrementally producing the set of the best M δ-modes of the joint distribution JN(X).338

Definition 7 ([39]). A solution t is said to be a δ-mode iff there exists no better solution than t339

in the Hamming ball of radius δ centered in t (implying that t is a local minimum).340

In [38–41], an exact dynamic programming algorithm, combined with an A* heuris-341

tic search and tree-decomposition was proposed to exactly solve this problem with the342

Hamming distance. This algorithm relies however on NP-complete lower bounds and is343

restricted to a fixed variable order, a restriction that is known to often drastically hamper344

solving efficiency. It however provides a diversity guarantee: indeed, a δ-mode will345

always be strictly more than δ away from another one and will be produced by greedily346

solving DIVERSESEQ.347

Theorem 1. Given a cost function network C, a diversity threshold δ, and D = H the Ham-348

ming dissimilarity matrix, for any δ-mode t, there exists a value M′ such that the solution of349

DIVERSESEQ(C, H, M′, δ + 1) contains t.350

Proof. If a δ-mode t is not in the solution of DIVERSESEQ(C, H, M′, δ + 1) , this must be351

because it gets forbidden by a DIST constraint. Consider the iteration i which forbids352

t for the first time: a solution with a cost lower than the cost of t was produced (else t353

would have been produced instead) but this solution is strictly less than δ + 1 away from354

t (since t gets forbidden). But this contradicts the fact that t is a δ-mode.355

For a sufficiently large M, the sequence Z of DIVERSESEQ(N, H, M, δ + 1) solutions356

will therefore contain all δ-modes and possibly some extra solutions. Interestingly, it is357

not difficult to separate modes from non-modes.358

Version May 28, 2021 submitted to Algorithms 11 of 27

Theorem 2.359

1. Any assignment t of a CFN C = (X, D, C) is a δ-mode iff it is an optimal solution of the360

CFN (X, D, C ∪ {DIST(X, t, H,−δ)})361

2. For bounded δ, this problem is in P.362

Proof. 1. The function DIST(X, t, H,−δ) restricts X to be within δ of t. If t is an optimal363

solution of (X, C ∪ {DIST(X, t, H,−δ})) then there is no better assignment than t in the364

δ-radius Hamming ball and t is a δ-mode.365

2. For bounded δ, a CFN with n variables and at most d values in each domain, there is366

O((nd)δ) tuples within the Hamming ball, because from t, we can pick any variable (n367

choices) and change its value (d choices), δ times. Therefore the problem of checking if t368

is optimal is in P.369

6. Representing the diversity constraint370

The key to guaranteeing quality and diversity of solutions in a cost function net-371

work is the dissimilarity cost function DIST. Given a complete assignment t, a dissimi-372

larity D and a threshold δ, we need to concisely encode the global diversity constraint373

DIST(X, t, D, δ).374

6.1. Using automata375

Given a solution t, a dissimilarity matrix D and a diversity threshold δ > 0, the376

cost function DIST(·, t, D, δ) needs to be added to the cost function network. Note that377

the function may involve all the network variables: it is a global cost function and its378

representation as one huge, exponential size tensor is not possible.379

To encode this function concisely, we exploit the fact that the set of authorized380

tuples defines a regular language, that can be encoded into a finite state automaton and381

then decomposed in ternary functions [42,43]. Here, we use a weighted automaton to382

define the weighted regular language of all tuples with their associated cost. A weighted383

automaton A = (Σ, Q, ∆, Q0, F) encoding DIST(X, t, D, δ) can be defined as follows:384

• The alphabet is the set of possible values, i.e., the union of the variable domains385

Σ =
⋃n

i=1 Di386

• The set of states Q gathers (δ + 1) · (n + 1) states denoted qd
i :

Q =
{

qd
i | 0 6 i 6 n, 0 6 d 6 δ

}
that represent the fact that the first i values of X have distance d to the first i values387

of t. For d = δ, automaton state qδ
i represents the fact that the first i values of X388

have distance > δ to the first i values of t.389

• In the initial state, no value of X has been read, and the dissimilarity is 0:

Q0 = q0
0

• The assignment is accepted if it has dissimilarity from t higher than the threshold δ,
hence the accepting state:

F = {qδ
n}

• For every value r of Xi, the transition function ∆ : Q × Σ × Q defines a 0-cost390

transition from qd
i to qmin(d+D(r,t[i+1]),δ)

i+1 . All other transitions have infinite cost >.391

This weighted automaton contains O(n · (δ + 1) · d) finite cost transitions, were d is392

the maximum domain size. An assignment t′ of X is accepted if and only if d(t′, t) > δ;393

and the automaton represents the DIST cost function. An example of a DIST encoding394

automaton is given in Figure 3.395

Version May 28, 2021 submitted to Algorithms 12 of 27

Figure 3. Weighted automaton representing DIST(X, t, H, δ) where X is a set of 5 variables, with
domains Di = {a, b, c}, t = aacba, H represents the Hamming distance, and δ is set to 2. State qd

i
means that values X1 . . . Xi are such that H(X1 . . . Xi, t[X1 . . . Xi]) = d (or > δ if d = δ). A labeled

arrow q
(v,w)−→ q′ means ∆(q, v, q′) = w, i.e., there is a transition from q to q′ with value v and weight

w.

6.2. Exploiting automaton function decomposition396

It is known that the WREGULAR cost function, encoding automaton A, can be de-397

composed into a sequence of ternary cost functions [43]. The decomposition is achieved398

by adding n + 1 state variables Q0, . . . , Qn, and n ternary cost functions wAQi ,Xi+1,Qi+1
,399

such that wAQi ,Xi+1,Qi+1
(qi, xi+1, qi+1) = c if and only if there exists a transition from qi400

to qi+1 in A labeled with value xi+1 and cost c. Variable Q0 is restricted to the starting401

states and variable Qn to the accepting states. Additional variables and ternary functions402

are represented in Figure 4. The resulting set of ternary functions is logically equivalent403

to the original global constraint.404

Figure 4. Hypergraph representation of the decomposition of a WREGULAR cost function with
additional state variables Qi and transition-encoding ternary functions.

The DIST function satisfies however several properties that can be exploited to405

further improve its space and time efficiency. One can first notice that the set of forbidden406

solutions does not depend on the order of the variables (the distance measure is the sum407

of independent variable-wise dissimilarities). Therefore, the order of the variables in the408

automaton can be chosen freely. We can use the DAC-ordering [43]. This order is known409

to preserve the strength of the lower bounds produced by CFN local consistencies when410

applied to the decomposition (instead of the initial full DIST function, with its potentially411

exponential size table).412

Then, in the case of the DIST cost function, each state variable has (δ + 1) · (n + 1)413

values (the number of states in the automaton) and each ternary function cost table414

describes costs of (δ + 1)2 · (n + 1)2 · d tuples, where d is the domain size. To speed up415

the resolution through better soft local consistency enforcing, we exploit the properties416

of DIST and the dissimilarity matrix D.417

6.3. Compressing the encoding418

The encoding of a DIST cost function in a sequence of n ternary functions, described419

in cost tables of size (δ + 1)2 · (n + 1)2 · d can be reduced along several lines.420

Version May 28, 2021 submitted to Algorithms 13 of 27

Direct (ternary) decomposition Hidden representationDual representation

Figure 5. Representation of the ternary decomposition, and its dual and hidden representations.

First, for DIST, we know that states sd
i can only be reached after i transitions, i.e., the

reachable states of variable Qi are the states in the i-th column in the DIST automaton
(see Figure 3). The domains of the variables Qi can be reduced to the δ + 1 states sd

i :

DQi =
{

qd
i | 0 6 d 6 δ

}
Furthermore, our semi-metrics are defined by a non-decreasing sum of non-negative421

elements of D. Therefore, any state qd
i can reach the accepting state qδ

n if and only if the422

maximum dissimilarity mdi that can be achieved from variable i to variable n is larger423

than the remaining diversity to reach δ− d. All such maximum dissimilarities mdi can424

be pre-computed in one pass over all variables in X as follows:425

• mdn = 0426

• For 0 6 i < n, mdi = mdi+1 + maxv,v′∈ Di+1
D(v, v′)427

In the Hamming case, the distance can increase by 1 at most, i.e., maxv,v′∈Di+1
H(v, v′) =428

1, therefore mdi = n− i.429

A symmetric argument holds for the starting state q0
0. These simplifications reduce430

ternary cost tables to O((δ + 1)2 · d).431

For a given dissimilarity matrix D, let #D denote the number of distinct values that432

appear in D. If variables have domains of maximum size d and ignoring the useless 0433

matrix, we know that 2 6 #D 6 1 + d·(d+1)
2 . However, distance matrices are usually434

more structured. For example, the BLOSUM62 similarity matrix leads to #D = 12 levels.435

In the Hamming case, there are #H = 2 dissimilarity levels. This means that a436

state qd
i can only reach states qd

i+1 or qd+1
i+1 . This sparsity of the transition matrix can be437

exploited, provided it is made visible. This can be achieved using extended variants438

of the dual and hidden encoding of constraint networks [14,15]. These transformations,439

detailed hereafter, are known to preserve the set of solutions and their costs.440

In constraint networks, the dual representation of a constraint network X =441

(X, D, C) is a new network X ′ = (X′, D′, C′) with:442

• One variable XS per constraint cS ∈ C:

X′ = { XS| cS ∈ C }

• Domain DXS of variable XS is the set of tuples t ∈ DS that satisfy the constraint cS:

D′ = {DXS | cS ∈ C} DXS = {t ∈ cS}

• For each pair of constraints cS, cS′ ∈ C with overlapping scopes S∩ S′ 6= ∅, there is
a constraint cXS ,XS′

that ensures that tuples assigned to XS and XS′ are compatible,
i.e., they have the same values on the overlapping variables:

C′ =
{

cXS ,XS′
| XS, XS′ ∈ X′, S ∩ S′ 6= ∅

}
where

cXS ,XS′
= { (t, t′) ∈ DXS ×DXS′

| t[S ∩ S′] = t′[S ∩ S′] }

Version May 28, 2021 submitted to Algorithms 14 of 27

We apply this transformation to the reduced wAQi ,Xi+1,Qi+1
functions (see Figure

5). The dual variable of wAQi ,Xi+1,Qi+1
is a variable XAi that contains all pairs (q, q′) ∈

Qi × Qi+1 such that there is a transition from q to q′ in A. For the Hamming case, the
variable XAi has at most 2δ + 1 values. It is connected to Xi by a pairwise function:

cXAi ,Xi
: DXAi ×Di

−→ {0, . . . ,>}
((q, q′), v) 7−→ ∆(q, v, q′)

where ∆ is the weighted transition function of the automaton A.443

In this new dual representation, for every pair of consecutive dual variables XAi−1
and XAi , we add a function on these two variables to ensure that the arriving state of
XA

i−1 is the starting state of XAi :

cXAi−1XAi
: ((qi−1, q′i−1), (qi, q′i)) 7→

{
0 if q′i−1 = qi
> otherwise.

In the worst case, this function has size O(#D2 · δ2) (O(δ2) in the Hamming case). Only444

n extra variables are required.445

The hidden representation of a constraint network X = (X, D, C) is a network446

X ′′ = (X′′, D′′, C′′) with:447

• All the variables in X and the variables XS from the dual network (and associated
domains):

X′′ = X ∪ X′

• For any dual variable XS, and each Xi ∈ S, the set of constraints C′′ contains a
function involving Xi and XS:

cXiXS : (v, t) ∈ Di ×DXS 7→
{

0 if t[Xi] = v
> otherwise.

As before, this transformation is applied to the reduced wAQi ,Xi+1,Qi+1
functions only

(see Figure 5). In this new hidden representation, we keep variables Qi and create two
pairwise functions involving each Qi and respectively XAi and XAi+1:

cQiXAi−1
: (q′′, (q, q′)) 7→

{
0 if q′′ = q
> otherwise.

cQiXAi
: (q′′, (q, q′)) 7→

{
0 if q′′ = q′

> otherwise.

These functions ensure that the state value of Qi is consistent with the arriving state of448

the transition represented in XAi−1 and the starting state of XAi . In the worst case, these449

functions have size O(#D · δ2) (O(δ2) in the Hamming case).450

The dedicated dual and hidden representations require the description of O(δ · d +451

#D2 · δ2) and O(δ · d + #D · δ2) tuples respectively (it is O(δ · d + δ2) in the Hamming452

case), instead of the O(d · δ2) tuples in wAQi ,Xi+1,Qi+1
.453

7. Greedy DiverseSeq454

The task at hand is the resolution of DIVERSESET(C, D, M, δ), i.e., the generation455

of a set of M solutions with minimum cost, that satisfy a minimum pairwise diversity456

constraint. The exact computation being too expensive, we are tackling a greedy com-457

putation of DIVERSESEQ(C, D, M, δ), a set of diverse good solutions that approximates458

DIVERSESET . The DIVERSESEQ computation is iterative:459

1. The CFN C is solved using branch-and-bound while maintaining soft local consis-460

tencies [26].461

Version May 28, 2021 submitted to Algorithms 15 of 27

2. If a solution t is found, it is added to the ongoing solution sequence Z.462

3. If M solutions have been produced, the algorithm stops.463

4. Otherwise, the cost function DIST(X, t, D, δ) is added to the previously solved464

problem.465

5. We loop and solve the problem again (Step 1)466

At Step 2, if no solution exists, the sequence of solutions Z can provably not be extended467

to length M and the problem has no solution (but a shorter sequence has been produced).468

Algorithm 1: Incremental production of DIVERSESEQ(C, D, M, δ)

1 Procedure Solve (C, lb, ub)
2 Compute optimum solution t∗ of C with lb 6 Cost(t∗) < ub;
3 if t∗ exists then
4 return (t∗, true)
5 else
6 return (∅, f alse);

7 Procedure IncrementalSearch (C, lb, ub, ∆h, Z, M, D, δ)
8 t∗, solved← Solve(C, lb, Cost(Z[i− 1] + ∆h));
9 if not solved then

10 t∗, solved← Solve(C, lb, ub)); . Upper bound prediction failed

11 if not solved then
12 return Z ; . Z can not be extended to length M

13 Z← Z ∪ {t∗};
14 if |Z| = M then
15 return Z ; . Enough solutions have been produced

16 Add DIST(X, t∗, D, δ) to C;
17 Propagate and save local consistencies in C;
18 Update ∆h ; . Using Cost (t∗)
19 lb← Cost(t∗);
20 DIVERSESEQ (C, lb, ub, ∆h, Z, M, D, δ);

21 Procedure DiverseSeq (C, M, D, δ)
22 return IncrementalSearch(C, 0,>, 0,∅, M, D, δ);

This basic schema has been improved in three different ways (see Algorithm 1):469

Incrementality Since the problems solved are increasingly constrained, all the equiva-470

lence preserving transformations and pruning that have been applied to enforce471

local consistencies at iteration i− 1 are still valid in the following iterations. Instead472

of restarting from a problem C = (X, D, C ∪⋃1≤j<i{DIST(X, Z[j], D, δ}), we reuse473

the problem solved at iteration i− 1 after it has been made locally consistent, add474

the DIST(X, Z[i− 1], D, δ) constraint and reinforce local consistencies. Similarly475

to incremental SAT solvers, adaptive variable ordering heuristics that have been476

trained at iteration i− 1 are reused at iteration i.477

Lower bound Since the problems solved are increasingly constrained, we know that the478

optimal cost oci obtained at iteration i cannot have a lower cost than the optimum479

cost oci−1 reported at iteration i− 1. When large plateaus are present in the energy480

landscape, this allows stopping the search as soon as a solution of cost oci−1 is481

reached, avoiding a useless repeated proof of optimality.482

Upper bound prediction Even if there are no plateaus in the energy landscape, there483

may be large regions with similar variations in energy. In this case, the difference484

in energy between oci−1 and oci will remain similar for several iterations. Let485

∆h
i = maxmax(2,i−h)≤j<i(ocj − ocj−1) be the maximum variation observed in the486

last h iterations (we used h = 5). At iteration i, we can first solve the problem487

Version May 28, 2021 submitted to Algorithms 16 of 27

PDB ID n d PDB ID n d PDB ID n d

1aho 56 378 3i8z 50 354 1ten 81 392
2fjz 53 324 2cg7 82 380 1ucs 60 342

1b9w 78 386 3rdy 65 396 2bwf 69 347
2gkt 45 357 2erw 47 446 2evb 68 323
1f94 53 386 3vdj 67 391 2o37 60 386
2pne 77 401 2fht 64 346 2o9s 48 327
1hyp 66 385 1bxy 52 384 3f04 87 356
2pst 61 357 1ctf 68 349 3fym 70 348
1uln 66 367 1czp 76 373 3gqs 67 344
1uoy 56 337 1fqt 85 377 3gva 87 348
2ca7 44 348 1guu 47 350 3i2z 67 360
1yzm 46 294 1t8k 68 361

Table 1. List of protein structures used in our benchmark set, for full redesign: pdb identifier,
domain length n (number of variables in the resulting CFN) and maximum domain size d.

with a temporary upper bound k′ = min(k, oci−1 + 2.∆h
i) that should preserve a488

solution. If k′ < k, this will lead to increased determinism, additional pruning, and489

possibly exponential savings. Otherwise, if no solution is found, the problem is490

solved again with the original upper bound k. We call this predictive bounding.491

Each of these three improvements has the capacity to offer exponential time savings,492

and all are used in the experiments presented in the next sections.493

8. Results494

We implemented the iterative approach described above in its direct (ternary)495

decomposition, hidden and dual representations in the CFN open-source solver toulbar2496

and experimented with it on various CFNs representing real Bayesian Networks [44].497

All three decompositions offered comparable efficiency but empirically, as expected,498

the dual encoding was almost systematically more efficient. It is now the default for499

diversity encoding in toulbar2. All toulbar2 preprocessing algorithms dedicated to exact500

optimization that do not preserve suboptimal solutions were deactivated at the root node501

(variable elimination, dead-end elimination, variable merging). We chose to enforce502

strong virtual arc consistency (flag -A in toulbar2). The computational cost of VAC,503

although polynomial, is high, but amortized over the M resolutions. During tree search,504

the default existential directional arc consistency (EDAC) was used. All experiments505

were performed on one core of a Xeon Gold 6140 CPU at 2.30 GHz. Wall-clock times506

could be further reduced using a parallel implementation of the underlying Hybrid507

Best-First search engine [45], currently under development in toulbar2.508

Following our main motivation for protein design, we extracted two sets of prepared509

protein backbones for full redesigns from the benchmark sets built by [46] and [47] with510

the aim of checking if, as expected, diverse libraries can improve the overall design511

process. In the benchmark of monomeric proteins of less than 100 residues, with an X-ray512

resolved structure below 2 Å, with no missing or nonstandard residues and no ligand513

from [46], we selected the 20 proteins that had required the least CPU-time to solve, as514

indicated in the Excel sheet provided in the supplementary information of paper [46].515

The harder instances from [47] correspond to proteins with diverse secondary structure516

compositions and fold classes. We selected the 17 instances that required less than 24517

hours of CPU-time for the full redesigned GMEC to be computed by toulbar2. These518

instances are listed in Table 1.519

Full redesign was performed on each protein structure, and CFN instances were520

generated using the Dunbrack library [16] and Rosetta ref2015 score function [48].521

Alternate rotamer libraries and score functions can be used if required as the algorithms522

presented here are not specialized for Rosetta (and not even for CPD, see [44]). The523

Version May 28, 2021 submitted to Algorithms 17 of 27

resulting networks have from 44 to 87 rotamer variables, and maximum domain sizes524

range from 294 to 446 rotamers. The number of variables is doubled after sequence525

variables are added.526

Predictive bounding contribution527

M = 10 solutions with diversity threshold δ = 10 for each problem from [46] were528

generated, with and without predictive bounding. The worst CPU-time spent on the529

resolution without predictive bounding was 32 minutes. It was reduced to 17 minutes530

with predictive bounding. The average computation time was 201s per problem. This531

shows that predictive bounding provides a simple and efficient boost and that real532

CPD instances can be solved in a reasonable time, even when relatively large diversity533

requirements are used.534

Diversity improves prediction quality535

For all instances, sets of M = 10 solutions were generated with diversity threshold536

δ ranging from 1 to 15. For δ = 1, the set of solutions produced is just the set of the 10537

best (minimum energy) sequences.538

These CPD problems use real protein backbones, determined experimentally. A539

native sequence exists for these backbones, therefore it is possible to measure the im-540

provements diversity brings in terms of recovering native sequences, known to be folded541

and functional. Two measures are often used to assess computational protein design542

methods. The Native Sequence Recovery (NSR) is the percentage of amino acid residues543

in the designed protein which are identical to the amino acid residues in the native544

sequence that folds on the target backbone. The NSR can be enhanced by taking into545

account similarity scores between the amino acid types. Such scores are provided by546

similarity matrices, like BLOSUM62 [30]. The Native Sequence Similarity Recovery (NSSR)547

is the fraction of positions where the designed and native sequences have a positive548

similarity score. NSR and NSSR measure how much the redesigned protein resembles549

the natural in terms of sequence. While often used, these measures have their own550

limitations: while protein design targets maximal stability, natural protein only require551

sufficient marginal stability. In the end, they therefore provide a useful but imperfect552

proxy for computation protein design evaluation: a perfect (100%) recovery would not553

necessarily indicate the best algorithm (also because the approximate energy function554

plays a major role here).555

If solution diversity helps, the maximum NSR/NSSR over the 10 sequences should556

improve when δ is large compared to when δ = 1, as long as the costs remain close to the557

optimum. A solution cost too far from the optimum, which could be generated because558

of a diversity threshold set too high, would mean a poor quality of the solution. Even559

with δ = 15, the maximum difference in energy we observed with the global minimum560

energy never exceeded 4.3 kcal/mol (with an average of 2.1 kcal/mol).561

For each protein, and each diversity threshold δ = 2 . . . 15, we compared the best562

NSR (resp. NSSR) that could be obtained with δ to the best obtained with diversity563

threshold 1, i.e., the simple enumeration of the 10 best sequences. Results are plotted564

in Figure 6 (resp. Figure 7). While somewhat noisy, they show a clear general increase565

in the best NSR (resp. NSSR) when diverse sequences are produced, even with small δ.566

To validate the statistical significance of the diversity improvement of sequence quality,567

p-values for a unilateral Wilcoxon signed-rank test comparing the sample of best NSR568

(resp. NSSR) for each δ = 2 . . . 15 with δ = 1 were computed. They are shown in Table 2569

and confirm the improvement brought by increasingly diverse libraries.570

The improvements are more clearly visible when one compares the absolute im-571

provement in NSR (and NSSR) obtained when one compares the best sequences pro-572

duced inside a library using a guaranteed diversity of 15 versus just 1, as illustrated in573

Figure 8. On most backbones (X-axis), the increased diversity yields a clear improvement574

in the NSR (Y-axis), with the largest absolute improvement exceeding 15% in NSR. For a575

Version May 28, 2021 submitted to Algorithms 18 of 27

Figure 6. Comparison of the best NSR value obtained with ten 1-diverse sequences (δ = 1, blue
curve) with the best NSR value obtained with libraries of ten sequences of increased diversity.
Each plot corresponds to a specific additional value of δ (δ = 2 to 15, golden curve). Plots are
ordered lexicographically from top-left to bottom right, with increasing values of diversity (δ). In
each plot, the X-axis ranges over all tested backbones, sorted in increasing order of NSR value for
the 1-diverse case and the Y-axis gives the corresponding NSR value. As the diversity requirement
increases, the NSR value indicated by the golden curve increases also visibly.

Version May 28, 2021 submitted to Algorithms 19 of 27

Figure 7. Comparison of the best NSSR value obtained with ten 1-diverse sequences (δ = 1, blue
curve) with the best NSSR value obtained with libraries of ten sequences of increased diversity.
Each plot corresponds to a specific additional value of δ (δ = 2 to 15, golden curve). Plots are
ordered lexicographically from top-left to bottom right, with increasing values of diversity (δ).
In each plot, the X-axis ranges over all tested backbones, sorted in increasing order of NSSR
value for the 1-diverse case and the Y-axis gives the corresponding NSSR value. As the diversity
requirement δ increases, the NSSR value indicated by the golden curve increases also visibly.

Version May 28, 2021 submitted to Algorithms 20 of 27

Exact resolution Subopt. resolution

δ NSR NSSR NSR NSSR

2 2.88e-03 1.10e-03 4.11e-01 1.35e-01
3 3.87e-04 1.01e-04 1.14e-01 2.60e-02
4 4.42e-05 6.58e-05 4.48e-03 1.06e-03
5 8.11e-05 1.54e-05 1.98e-03 2.15e-03
6 1.51e-05 4.39e-06 7.47e-05 4.49e-05
7 1.88e-05 4.23e-06 8.86e-06 3.50e-05
8 1.27e-05 1.49e-06 8.19e-06 1.77e-05
9 2.76e-05 5.97e-06 2.07e-05 2.80e-06

10 1.14e-05 1.18e-05 1.78e-05 3.06e-05
11 4.27e-05 5.81e-07 2.32e-05 1.73e-05
12 6.63e-05 2.26e-06 1.75e-05 1.18e-05
13 4.43e-05 2.52e-06 2.48e-06 6.15e-06
14 2.29e-05 5.76e-06 5.26e-06 3.89e-07
15 3.92e-05 1.58e-06 2.68e-05 4.86e-05

Table 2. p-values for a unilateral Wilcoxon signed rank test comparing the sample of best NSR
(resp. NSSR) for each δ = 2 . . . 15 with δ = 1, for optimal and suboptimal (3 kcal/mol allowed
energy gap to real optimum) resolution.

small fraction of backbones, there is absolutely no improvement. These are backbones for576

which the GMEC actually provides the best NSR in both the 1-diverse and the 15-diverse577

cases. Then an even smaller fraction of backbones show an actual decrease in NSR: one578

close to GMEC solution did better than any of the 15-diverse sequences. The degradation579

here is very limited and likely corresponds to substitutions to similar amino acids. This580

is confirmed by the NSSR curve that takes into account amino acid properties through581

the underlying BLOSUM62 matrix used. Here, only one case show a degradation in582

NSSR.583

Diversity also has the advantage that it is more likely to provide improved se-584

quences when the predicted 1-diverse sequences are poor. Indeed, with a initial sequence585

with NSR equal to r, the introduction of a random mutation will move us away from the586

native in r% of cases (we mutate a correct amino acid) and otherwise (we mutate a wrong587

amino acid) leave us with a wrong amino acid again (in 18/19 cases, leaving the NSR588

unchanged) or get us closer to the native sequence with 1/19 probability. On average,589

a mutation should therefore decrease the number of correct positions with probability590

(r− 1−r
19), which increases with r and is positive as soon as the sequence has NSR higher591

than 5% (1
20). Our results confirm this trend, as shown in the NSR figure on the left of592

Figure 8: among the ten backbones with the highest improvement in NSR, nine had a593

1-diverse NSR below the average 1-diverse NSR. Conversely, only 50% of the ten less594

improved backbones had a below-average 1-diverse NSR. While these improvements595

underline the approximate nature of the energy function, showing that it is often worth596

to explore the sequence space beyond the GMEC, they also confirm that energy, on597

average, does guide us towards native sequences: instead of degrading NSR as soon as598

r > 1
20 , energy optimization pushes the introduced mutations to improve NSR in most599

cases, even with 15 introduced mutations and initial NSRs ranging from 20 to 60%.600

Each dissimilarity constraint adds n extra variables to the network (with the dual601

representation). These variable domain sizes increase with the diversity threshold δ and602

contribute to the construction of increasingly large CFN instances that need to be solved.603

Computation times are plotted in Figure 9. As expected, a threshold increase leads to an604

exponential increase in the computation time. The small set of points on the top right605

corner of the plot correspond to the protein structure 3FYM. This protein, with 70 amino606

acids, is not the largest in our benchmark set, a reminder that size is not necessarily the607

Version May 28, 2021 submitted to Algorithms 21 of 27

Benchmark scaffolds

1 to 15 diverse NSSR improvement

-20 %

20 %

-5 %

0 %

5 %

10 %

15 %

20 %

NS
R

im
pr

ov
em

en
t

Benchmark scaffolds

NSR - average NSR
1 to 15 diverse NSR improvement

Figure 8. The blue curves above give the absolute change in NSR (Y axis, left figure) and NSSR
(Y-axis, right figure) between the best 15-diverse and the best 1-diverse sequences found for each
backbone. Backbones (on the X-axis) are ordered in increasing order of the corresponding measure.
In the left figure, the bar-plot shows the difference between each backbone 1-diverse NSR and
average 1-diverse NSR over all backbones. The corresponding NSR change scale appears on the
the right with ±20% labels. Red bars indicate a below average 1-diverse NSR while blue bars
indicate an above average 1-diverse NSR. The most improved NSRs, on the right of the left figure,
mostly appear on weak (red, below average) 1-diverse NSRs.

best predictor of empirical computational cost in NP-hard problem solving. On this608

backbone, for high diversity thresholds, the 24h computation time limit was reached609

and less than 10 sequences were produced.610

Given that the optimized function is an approximation of the real intractable energy,611

solving the problem to optimality might seem exaggerated. The requirement for opti-612

mality that we have used in previous experiments can be trivially relaxed to a relative or613

absolute approximation guarantee using artificially tightened pruning rules as originally614

proposed in [49] in the Weighted-A* algorithm. This pruning mechanism is already615

implemented in the toulbar2 solver (using the -rgap and -agap flags respectively).616

For diversity threshold δ = 2 . . . 15, we generated sets of 10 suboptimal diverse617

sequences that satisfy the diversity constraints, but allowing for a 3 kcal/mol energy618

gap to the optimum. Our optimizations are still provable, but the optimality guarantee619

is now reduced to a bounded sub-optimality guarantee. Empirically, the maximum620

energy degradation we observed with the global minimum energy over the 10 diverse621

sequences produced never exceeded 5.65 kcal/mol (with an average energy difference622

of 3.86 kcal/mol). This is only slightly more than the 4.3 kcal/mol worse degradation623

(average 2.1 kcal/mol) of the resolution, when exact optimum are used.624

We compared these samples of suboptimal sequences to the set of 10 exact best625

sequences. Results for NSR and NSSR are shown in Figures 10 and 11 respectively, and626

corresponding p-values are displayed in Table 2 (unilateral Wilcoxon signed rank test).627

With dissimilarity threshold δ > 6, it is clear that the set of diverse suboptimal sequences628

have better quality than the 10 best enumerated sequences. Moreover, as shown in629

Figure 12, for harder instances, suboptimal diverse resolution becomes faster than exact630

enumeration.631

So, when predicting a library of sequences, if the instance is hard, it seems empiri-632

cally wise to generate suboptimal diverse sequences, instead of enumerating minimum633

energy sequences, without diversity. Doing so, there is a higher chance of predicting634

better sequences “in practice” faster.635

9. Conclusions636

Producing a library of diverse solutions is a very usual requirement when an637

approximate or learned model is used for optimal decoding. In this paper, we show that638

with an incremental provable CFN approach that directly tackles a series of decision NP-639

complete problems, using diversity constraints represented as weighted automata that640

are densely encoded in a dedicated dual encoding together with predictive bounding,641

Version May 28, 2021 submitted to Algorithms 22 of 27

Figure 9. Comparison of the computation times of sequence sets without diversity δ = 1, with
sequence sets with diversity δ > 1. The color scale on the right indicates the corresponding value
of δ.

it is possible to produce sequences of solutions that satisfy guarantees on diversity642

on realistic full redesign Computational Protein Design instances. This guarantee is643

obtained on dense problems, with non-permutated-submodular functions while also644

guaranteeing that each new solution produced is the best given the previously identified645

solutions.646

We also showed that the stream of diverse solutions that our algorithm produces647

can be filtered and each solution efficiently identified as being a δ-mode or not. δ-mode648

represent local minima, each defining its own basin in the protein sequence energy649

landscape. Beyond their direct use for design, the guaranteed diversity provided by our650

algorithm could also be of interest to perform more systematic analyses of such energy651

landscapes.652

On real protein design problems, we observe that small and large diversity require-653

ments do improve the quality of sequence libraries when native proteins are fully re-654

designed. Moreover, large diversity requirements on suboptimal sequences also improve655

the quality of sequence libraries, compared to a simple enumeration of the minimum656

energy sequences. In the context of optimizing an approximate or learned function,657

the requirement for an optimal cost solution may be considered as exaggerated. Our658

guaranteed suboptimal resolution is useful, given that even computationally expensive659

approaches with asymptotic convergence results such as Simulated Annealing may fail660

with unbounded error [46].661

Two directions could extend this work. Beyond the language of permutated sub-662

modular functions, the other important tractable class of CFN is the class of CFN with663

a graph of bounded tree-width. This parameter is exploited in several protein pack-664

ing [50] and design [51] algorithms and is also exploited in dedicated branch and bound665

algorithms, also implemented in toulbar2 [45,52]. These tree-search algorithms are666

able to trade space for time and are empirically usable on problems with a tree-width667

that is too large to make pure dynamic programming applicable, mostly because of668

its space-complexity (in O(dw) where d is the domain size and w is the width of the669

tree-decomposition used). On such problems, it would be desirable to show that the670

decomposed ternary or binary functions we use for encoding DIST can be arranged in671

such a way that tree-width can be preserved or more likely, not exaggeratedly increased.672

Version May 28, 2021 submitted to Algorithms 23 of 27

Figure 10. Comparison of the best NSR value obtained with ten 1-diverse sequences (δ = 1, blue
curve) with the best NSR value obtained with libraries of ten sequences of increased diversity
all predicted with an allowed gap top optimal energy of 3 kcal/mol. Each plot corresponds to a
specific additional value of δ (δ = 2 to 15, golden curve). Plots are lexicographically ordered from
top-left to bottom right, with increasing values of diversity (δ). In each plot, the X-axis ranges
over all tested backbones, sorted in increasing order of NSR value for the 1-diverse case and the
Y-axis gives the corresponding NSR value. As the diversity requirement δ increases, the NSR value
indicated by the golden curve increases also visibly.

Version May 28, 2021 submitted to Algorithms 24 of 27

Figure 11. Comparison of the best NSSR value obtained with ten 1-diverse sequences (δ = 1, blue
curve) with the best NSSR value obtained with libraries of ten sequences of increased diversity
all predicted with an allowed gap top optimal energy of 3 kcal/mol. Each plot corresponds to a
specific additional value of δ (δ = 2 to 15, golden curve). Plots are lexicographically ordered from
top-left to bottom right, with increasing values of diversity (δ). In each plot, the X-axis ranges over
all tested backbones, sorted in increasing order of NSSR value for the 1-diverse case and the Y-axis
gives the corresponding NSSR value. As the diversity requirement δ increases, the NSSR value
indicated by the golden curve increases also visibly.

Version May 28, 2021 submitted to Algorithms 25 of 27

Figure 12. Comparison of the computation times of sequence sets without diversity δ = 1, with
suboptimal sequence sets with diversity δ > 1. An energy gap of 3 kcal/mol is allowed to actual
optimum.

This would enable the efficient production of diverse solutions for otherwise unsolved673

structured instances.674

Another direction would be to identify a formulation of the DIST (and possibly675

DIVmin) constraints that would provide better pruning or avoid the introduction of extra676

variables that often disturb dynamic variable ordering heuristics. One possibility would677

be to encode these using linear (knapsack) constraints for which dedicated propagators678

would need to be developed.679

Author Contributions: Conceptualization, S.B. and T.S.; methodology, M.R., G.K. and T.S.; soft-680

ware, M.R., J.V.; S.d.G and T.S.; validation, M.R.; formal analysis, M.R.; resources, T.S. and S.B.;681

data curation, M.R., J.V., T.S. and S.B.; writing—original draft preparation, M.R.; writing—review682

and editing, M.R., T.S. and S.B.; supervision, T.S. and S.B.; funding acquisition, T.S. All authors683

have read and agreed to the published version of the manuscript.684

Funding: This research was funded by the French “Agence Nationale de la Recherche” through685

grants ANR-16-CE40-0028 and ANR-19-PI3A-0004.686

Data Availability Statement: No data specific to this paper. The benchmarks we use are available687

on existing repositories and the code of toulbar2, that includes our contributions, is available on688

GitHub at https://github.com/toulbar2/toulbar2 under an OSI MIT license.689

Acknowledgments: We thank the GenoToul (Toulouse, France) Bioinformatics platform and the690

CALMIP HPC platform for their computational support.691

Conflicts of Interest: The authors declare no conflict of interest.692

Abbreviations693

The following abbreviations are used in this manuscript:694

695

CFN Cost Function Network
CPD Computational Protein Design
CSP Constraint Satisfaction Problem
MRF Markov Random Field
NSR Native Sequence Recovery
NSSR Native Sequence Similarity Recovery
WCSP Weighted Constraint Satisfaction Problem

696

https://github.com/toulbar2/toulbar2

Version May 28, 2021 submitted to Algorithms 26 of 27

References
1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230.
2. Pierce, N.A.; Winfree, E. Protein design is NP-hard. Protein engineering 2002, 15, 779–782.
3. Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated annealing: Theory and applications; Springer, 1987; pp. 7–15.
4. Leaver-Fay, A.; Tyka, M.; Lewis, S.M.; Lange, O.F.; Thompson, J.; Jacak, R.; Kaufman, K.W.; Renfrew, P.D.; Smith, C.A.; Sheffler, W.;

others. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. In Methods in enzymology;
Elsevier, 2011; Vol. 487, pp. 545–574.

5. Traoré, S.; Allouche, D.; André, I.; De Givry, S.; Katsirelos, G.; Schiex, T.; Barbe, S. A new framework for computational protein
design through cost function network optimization. Bioinformatics 2013, 29, 2129–2136.

6. Allouche, D.; André, I.; Barbe, S.; Davies, J.; de Givry, S.; Katsirelos, G.; O’Sullivan, B.; Prestwich, S.; Schiex, T.; Traoré, S.
Computational protein design as an optimization problem. Artificial Intelligence 2014, 212, 59–79.

7. Noguchi, H.; Addy, C.; Simoncini, D.; Wouters, S.; Mylemans, B.; Van Meervelt, L.; Schiex, T.; Zhang, K.Y.; Tame, J.R.; Voet, A.R.
Computational design of symmetrical eight-bladed β-propeller proteins. IUCrJ 2019, 6, 46–55.

8. Schiex, T.; Fargier, H.; Verfaillie, G.; others. Valued constraint satisfaction problems: Hard and easy problems. IJCAI (1) 1995,
95, 631–639.

9. Cooper, M.; de Givry, S.; Schiex, T. Graphical models: queries, complexity, algorithms. Leibniz International Proceedings in
Informatics 2020, 154, 4–1.

10. Bouchiba, Y.; Cortés, J.; Schiex, T.; Barbe, S. Molecular flexibility in computational protein design: an algorithmic perspective.
Protein Engineering, Design and Selection 2021, 34.

11. Marcos, E.; Silva, D.A. Essentials of de novo protein design: Methods and applications. Wiley Interdisciplinary Reviews:
Computational Molecular Science 2018, 8, e1374.

12. King, C.; Garza, E.N.; Mazor, R.; Linehan, J.L.; Pastan, I.; Pepper, M.; Baker, D. Removing T-cell epitopes with computational
protein design. Proceedings of the National Academy of Sciences 2014, 111, 8577–8582.

13. Kirillov, A.; Shlezinger, D.; Vetrov, D.P.; Rother, C.; Savchynskyy, B. M-Best-Diverse Labelings for Submodular Energies and
Beyond. NIPS, 2015, pp. 613–621.

14. Bacchus, F.; Van Beek, P. On the conversion between non-binary and binary constraint satisfaction problems. AAAI/IAAI, 1998,
pp. 310–318.

15. Larrosa, J.; Dechter, R. On the dual representation of non-binary semiring-based CSPs. CP’2000 workshop on soft constraints,
2000.

16. Shapovalov, M.V.; Dunbrack Jr, R.L. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel
density estimates and regressions. Structure 2011, 19, 844–858.

17. Lovell, S.C.; Word, J.M.; Richardson, J.S.; Richardson, D.C. The penultimate rotamer library. Proteins: Structure, Function, and
Bioinformatics 2000, 40, 389–408.

18. Case, D.A.; Cheatham III, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J.
The Amber biomolecular simulation programs. Journal of computational chemistry 2005, 26, 1668–1688.

19. Brooks, B.R.; Brooks III, C.L.; Mackerell Jr, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.;
others. CHARMM: the biomolecular simulation program. Journal of computational chemistry 2009, 30, 1545–1614.

20. Alford, R.F.; Leaver-Fay, A.; Jeliazkov, J.R.; O’Meara, M.J.; DiMaio, F.P.; Park, H.; Shapovalov, M.V.; Renfrew, P.D.; Mulligan, V.K.;
Kappel, K.; others. The Rosetta all-atom energy function for macromolecular modeling and design. Journal of chemical theory and
computation 2017, 13, 3031–3048.

21. Samish, I. Computational protein design; Springer, 2017.
22. Gainza, P.; Roberts, K.E.; Georgiev, I.; Lilien, R.H.; Keedy, D.A.; Chen, C.Y.; Reza, F.; Anderson, A.C.; Richardson, D.C.; Richardson,

J.S.; others. OSPREY: protein design with ensembles, flexibility, and provable algorithms. In Methods in enzymology; Elsevier, 2013;
Vol. 523, pp. 87–107.

23. Pierce, N.A.; Spriet, J.A.; Desmet, J.; Mayo, S.L. Conformational splitting: A more powerful criterion for dead-end elimination.
Journal of computational chemistry 2000, 21, 999–1009.

24. Rossi, F.; van Beek, P.; Walsh, T., Eds. Handbook of Constraint Programming; Elsevier, 2006.
25. Koller, D.; Friedman, N. Probabilistic graphical models: principles and techniques; MIT press, 2009.
26. Cooper, M.C.; De Givry, S.; Sánchez, M.; Schiex, T.; Zytnicki, M.; Werner, T. Soft arc consistency revisited. Artificial Intelligence

2010, 174, 449–478.
27. Cooper, M.C.; De Givry, S.; Sánchez-Fibla, M.; Schiex, T.; Zytnicki, M. Virtual Arc Consistency for Weighted CSP. AAAI, 2008, pp.

253–258.
28. Traoré, S.; Roberts, K.E.; Allouche, D.; Donald, B.R.; André, I.; Schiex, T.; Barbe, S. Fast search algorithms for computational

protein design. Journal of computational chemistry 2016, 37, 1048–1058.
29. Traoré, S.; Allouche, D.; André, I.; Schiex, T.; Barbe, S. Deterministic Search Methods for Computational Protein Design. In

Computational Protein Design; Springer, 2017; pp. 107–123.
30. Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences

1992, 89, 10915–10919.

Version May 28, 2021 submitted to Algorithms 27 of 27

31. Hebrard, E.; Hnich, B.; O’Sullivan, B.; Walsh, T. Finding diverse and similar solutions in constraint programming. Proceedings of
AAAI 2005, 2005, Vol. 5, pp. 372–377.

32. Hebrard, E.; O’Sullivan, B.; Walsh, T. Distance Constraints in Constraint Satisfaction. IJCAI, 2007, Vol. 2007, pp. 106–111.
33. Hadžić, T.; Holland, A.; O’Sullivan, B. Reasoning about optimal collections of solutions. International Conference on Principles

and Practice of Constraint Programming. Springer, 2009, pp. 409–423.
34. Petit, T.; Trapp, A.C. Finding diverse solutions of high quality to constraint optimization problems. Twenty-Fourth International

Joint Conference on Artificial Intelligence, 2015.
35. Batra, D.; Yadollahpour, P.; Guzman-Rivera, A.; Shakhnarovich, G. Diverse M-best solutions in Markov Random Fields. European

Conference on Computer Vision. Springer, 2012, pp. 1–16.
36. Prasad, A.; Jegelka, S.; Batra, D. Submodular meets structured: Finding diverse subsets in exponentially-large structured item

sets. Advances in Neural Information Processing Systems, 2014, pp. 2645–2653.
37. Kirillov, A.; Savchynskyy, B.; Schlesinger, D.; Vetrov, D.; Rother, C. Inferring M-best diverse labelings in a single one. Proceedings

of the IEEE International Conference on Computer Vision, 2015, pp. 1814–1822.
38. Chen, C.; Kolmogorov, V.; Zhu, Y.; Metaxas, D.; Lampert, C. Computing the M most probable modes of a graphical model. Proc.

of Artificial Intelligence and Statistics, 2013, pp. 161–169.
39. Chen, C.; Yuan, C.; Ye, Z.; Chen, C. Solving M-Modes in Loopy Graphs Using Tree Decompositions. Proc. of the International

Conference on Probabilistic Graphical Models, 2018, pp. 145–156.
40. Chen, C.; Liu, H.; Metaxas, D.; Zhao, T. Mode estimation for high dimensional discrete tree graphical models. Proceedings of

Advances in neural information processing systems, 2014, pp. 1323–1331.
41. Chen, C.; Yuan, C.; Chen, C. Solving M-Modes Using Heuristic Search. Proc. of IJCAI’16, 2016, pp. 3584–3590.
42. Pesant, G. A regular language membership constraint for finite sequences of variables. International conference on principles

and practice of constraint programming. Springer, 2004, pp. 482–495.
43. Allouche, D.; Bessiere, C.; Boizumault, P.; De Givry, S.; Gutierrez, P.; Lee, J.H.; Leung, K.L.; Loudni, S.; Métivier, J.P.; Schiex, T.;

others. Tractability-preserving transformations of global cost functions. Artificial Intelligence 2016, 238, 166–189.
44. Ruffini, M.; Vucinic, J.; de Givry, S.; Katsirelos, G.; Barbe, S.; Schiex, T. Guaranteed Diversity & Quality for the Weighted CSP.

2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019, pp. 18–25.
45. Allouche, D.; De Givry, S.; Katsirelos, G.; Schiex, T.; Zytnicki, M. Anytime hybrid best-first search with tree decomposition for

weighted CSP. International Conference on Principles and Practice of Constraint Programming. Springer, 2015, pp. 12–29.
46. Simoncini, D.; Allouche, D.; de Givry, S.; Delmas, C.; Barbe, S.; Schiex, T. Guaranteed discrete energy optimization on large

protein design problems. Journal of chemical theory and computation 2015, 11, 5980–5989.
47. Ollikainen, N.; Kortemme, T. Computational protein design quantifies structural constraints on amino acid covariation. PLoS

Comput Biol 2013, 9, e1003313.
48. Park, H.; Bradley, P.; Greisen Jr, P.; Liu, Y.; Mulligan, V.K.; Kim, D.E.; Baker, D.; DiMaio, F. Simultaneous optimization of

biomolecular energy functions on features from small molecules and macromolecules. Journal of chemical theory and computation
2016, 12, 6201–6212.

49. Pohl, I. Heuristic search viewed as path finding in a graph. Artificial intelligence 1970, 1, 193–204.
50. Xu, J.; Berger, B. Fast and accurate algorithms for protein side-chain packing. Journal of the ACM (JACM) 2006, 53, 533–557.
51. Jou, J.D.; Jain, S.; Georgiev, I.S.; Donald, B.R. BWM*: A novel, provable, ensemble-based dynamic programming algorithm for

sparse approximations of computational protein design. Journal of Computational Biology 2016, 23, 413–424.
52. De Givry, S.; Schiex, T.; Verfaillie, G. Exploiting tree decomposition and soft local consistency in weighted CSP. AAAI, 2006,

Vol. 6, pp. 1–6.

	Introduction
	Computational Protein Design
	CPD as a Weighted Constraint Satisfaction Problem
	Diversity and Optimality
	Measuring diversity
	Diversity given sequences of interest
	Sets of diverse and good quality solutions

	Relation with existing work
	Representing the diversity constraint
	Using automata
	Exploiting automaton function decomposition
	Compressing the encoding

	Greedy DiverseSeq
	Results
	Conclusions
	References

