
Improved Acyclicity Reasoning for Bayesian

Network Structure Learning

Supplementary materials of IJCAI’2021 paper

June 22, 2021

We made a longer run with a 90-hour CPU-time limit for 41 very large
instances on a cluster of Intel Xeon E5-2683 v4 at 2.10 GHz and 128 GB of RAM.
We used the following parameters lmin = 20, lmax = 20, rmin = 15, rmax = 30
for partition lower bound min/max sizes lmin, lmax and local search min/max
number of restarts rmin, rmax. E.g., we ran ./elsa -B 20 -r 15 -R 30

-t 324000 kdd.test.jkl for solving kdd.test within the 90-hour CPU-time
limit. We compared with the original version of CPBayes and with GOBNILP
version 1.6.3 based on SCIP version 3.2.1 and cplex version 12.8.0 with default
parameters, except optimality gap set to zero.

1 Quality of Lower Bounds and Time per Node

We measured the quality of the initial lower bound lb found at the root node of
the search tree as the relative distance o−lb

o to the best solution o found by any
method within the 90-hour CPU-time limit. Results are given in Table 1. GOB-
NILP usually produced the best lower bounds. CPBayes got the worst ones and
ELSA made good progress towards GOBNILP but still remained below except a
few exceptions (GOBNILP stopped at the root node due to exhausted memory
for accidents.valid, dna, kosarek.valid, msweb.test, and msweb.valid).

In Figure 1, we show the mean CPU-time per search node when information
was available for a subset of the large instances. We sort the data by increasing
CPU-time independently for each solver. Here, GOBNILP is several orders of
magnitude slower than CPBayes and our approach. ELSA was usually slower
than CPBayes, up to 457.4 times for bnetflix.test, except on a few cases,
e.g., ELSA was 9.7 faster than CPBayes on pumsb star.test.

In Figure 2, we compare the number of nodes in the search tree for CPBayes
and ELSA on instances solved by the two approaches. Because this common
number of solved instances is too small, we compared on the smaller instances
with less than 64 variables as used in the main paper. The points below the line

1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20 25 30

C
P
U

 t
im

e
 p

e
r

n
o
d
e

Number of instances

gobnilp
cpbayes

cpbayes++

Figure 1: CPU-time (in seconds) per search node on some large instances.

y = x indicate a smaller search tree for ELSA. The reduction in the search tree
size is very clear.

2 Quality of Solutions and Optimality Proofs

We measured the quality of a BNSL solution s as the relative distance s−o
o to the

best solution o found by any method within the 90-hour CPU-time limit. The
results are given in Table 2. Notice that CPBayes and ELSA have a local search
procedure in preprocessing. It helps the search to find good initial solutions.

Concerning optimality proofs, ELSA solved 17 instances, GOBNILP solved
9, and CPBayes 4 only. GOBNILP ran out-of-memory (128GB) on 11 instances
whereas ELSA took less than 8GB on all the benchmark.

3 Impact of the Cut Pool Activity Threshold

We made a last experiment to see if the activity threshold has an impact on
the overall performance of our approach. Figure 3 gives the total number of
cluster cuts in the pool at the end of the search for 17 solved instances. Let
aC be the number of times cluster C has improved the lower bound. We found
that keeping in the pool clusters during 100× aC or up to 100, 000× aC search
nodes does not change the whole search effort in terms of total search nodes to
solve a problem (Figure 4). However it may increase CPU-time, but this could
also be due to performance fluctuations of the cluster (Figure 5).

By default, we choose an activity threshold of 1
1,000 , i.e. keeping each clus-

ter C during 1, 000 × aC search nodes. Clusters of size less than or equal
to 10 were always kept. Such clusters are often more productive and their
number is bounded, see for example cluster activities in kdd.test (Figure 6).
On 41 large instances, the number of cuts found in preprocessing ranged from
328 (accidents.test) to 4, 011 (kosarek.valid) with a mean of 2, 011.4.
At the end of the search (or 90-hour CPU-time limit), there were from 85

2

Figure 2: Number of search tree nodes for CPBayes and ELSA on smaller
instances with less than 64 variables.

 100

 1000

 10000

 100000

 1x106

 1x107

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u
m

b
e
r

o
f

cl
u
st

e
r

cu
ts

Large solved instances sorted by their size

Impact of activity ratio threshold on the number of cuts in the pool

1/100
1/1000

1/10000
1/100000

Figure 3: Number of cluster cuts in the pool at the end of the search when
solving large instances depending on the activity ration threshold.

3

 1000

 10000

 100000

 1x106

 1x107

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u
m

b
e
r

o
f

se
a
rc

h
 n

o
d

e
s

Large solved instances sorted by their size

Impact of activity ratio threshold on search effort

1/100
1/1000

1/10000
1/100000

Figure 4: Number of search nodes for solving large instances depending on the
activity ration threshold.

 100

 1000

 10000

 100000

 1x106

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
P
U

-t
im

e
 i
n
 s

e
co

n
d

s

Large solved instances sorted by their size

Impact of activity ratio threshold on search effort

1/100
1/1000

1/10000
1/100000

Figure 5: CPU-time for solving large instances depending on the activity ratio
threshold.

4

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60

C
lu

st
e
r

a
ct

iv
it

y
 (

#
p

ro
d

u
ct

iv
e
)

Cluster size

kdd.test

Figure 6: Cluster activity (#productive) w.r.t. size for 9, 018 cuts kept in the
cluster pool at the end of the search, after 14, 840 search nodes in 613 seconds
on kdd.test with 64 random variables.

(pumsb star.valid) to 163, 710 (baudio.ts) clusters in the pool with a mean
of 26, 638.3 clusters.

5

Problem |V|
∑

v∈V |ps(v)| GOBNILP CPBayes ELSA
kdd.ts 64 43584 ?0.03% 2.51% ?0.50%
kdd.test 64 152873 ?0.02% ?1.75% ?0.20%
plants.ts 69 164640 ?2.42% 35.01% 7.28%
kdd.valid 64 197546 ?0.13% 2.60% ?0.49%
baudio.ts 100 371117 2.00% 11.34% ?3.63%
pumsb star.ts 163 394992 ?0.19% 24.69% 0.46%
tretail.ts 135 435976 ?0.17% 0.48% 0.07%
bnetflix.ts 100 446406 3.23% ?20.86% ?8.73%
plants.test 69 520148 2.58% 34.32% ?5.98%
jester.ts 100 531961 4.20% 13.03% ?6.44%
kosarek.ts 190 556189 ?0.00% 2.13% 0.44%
accidents.ts 111 568160 ?0.00% 8.36% ?0.38%
plants.valid 69 684141 2.57% 34.61% ?6.66%
msweb.ts 294 732213 0.25% 1.83% 0.62%
diabetes-5000 413 754563 0.26% 0.67% 0.67%
jester.test 100 770950 4.76% 13.29% ?6.37%
tretail.test 135 897478 2.88% 4.44% 3.16%
baudio.test 100 1016403 2.22% 11.92% ?3.10%
pumsb star.test 163 1034955 23.79% 68.12% 21.61%
tretail.valid 135 1087404 0.67% 2.60% 2.60%
bnetflix.test 100 1103968 5.49% ?24.48% ?11.69%
kosarek.test 190 1192386 1.06% 4.38% 2.60%
baudio.valid 100 1235928 2.37% 12.09% ?3.32%
pumsb star.valid 163 1271525 33.69% 75.89% 21.63%
kosarek.valid 190 1312600 2.20% 5.84% 5.84%
bnetflix.valid 100 1325818 5.38% ?25.26% ?11.24%
accidents.test 111 1425966 ?0.00% 20.03% ?3.71%
jester.valid 100 1463335 5.64% 17.03% ?7.63%
msweb.test 294 1597487 0.53% 3.81% 0.37%
accidents.valid 111 1617862 3.57% 34.77% 7.83%
dna.ts 180 1849860 1.07% 5.53% 1.52%
msweb.valid 294 1869374 0.78% 3.59% 3.59%
tmovie.ts 500 1918883 35.15% - -
pigs-5000 441 1984359 24.50% - -
dna.test 180 2019003 1.07% 5.66% ?1.62%
book.ts 500 2071722 7.56% - -
dna.valid 180 2561134 3.90% 9.92% 3.72%
tmovie.valid 500 2610026 49.06% - -
tmovie.test 500 2778556 53.78% - -
book.test 500 2794588 15.08% - -
book.valid 500 3020475 20.24% - -

Table 1: Quality of initial lower bounds on 41 large instances. The best method
is shown in bold. ’?’: optimum proved, ’-’: no lower bound reported.

6

Problem |V|
∑

v∈V |ps(v)| GOBNILP CPBayes ELSA
kdd.ts 64 43584 ?0.00% 0.17% ?0.00%
kdd.test 64 152873 ?0.00% ?0.00% ?0.00%
plants.ts 69 164640 ?0.00% 3.02% 1.48%
kdd.valid 64 197546 ?0.00% 0.16% ?0.00%
baudio.ts 100 371117 1.62% 1.29% ?0.00%
pumsb star.ts 163 394992 ?0.00% 4.76% 4.76%
tretail.ts 135 435976 ?0.00% 0.29% 0.29%
bnetflix.ts 100 446406 0.01% ?0.00% ?0.00%
plants.test 69 520148 0.01% 2.61% ?0.00%
jester.ts 100 531961 10.29% 0.50% ?0.00%
kosarek.ts 190 556189 ?0.00% 1.62% 1.62%
accidents.ts 111 568160 ?0.00% 0.37% ?0.00%
plants.valid 69 684141 1.74% 2.40% ?0.00%
msweb.ts 294 732213 9.87% 0.00% 0.00%
diabetes-5000 413 754563 2.86% 0.00% 0.00%
jester.test 100 770950 7.45% 0.18% ?0.00%
tretail.test 135 897478 6.93% 0.03% 0.00%
baudio.test 100 1016403 13.69% 0.92% ?0.00%
pumsb star.test 163 1034955 102.62% 0.00% 0.00%
tretail.valid 135 1087404 17.60% 0.38% 0.00%
bnetflix.test 100 1103968 0.41% ?0.00% ?0.00%
kosarek.test 190 1192386 †15.70% 0.00% 0.00%
baudio.valid 100 1235928 12.46% 0.49% ?0.00%
pumsb star.valid 163 1271525 155.68% 0.00% 0.00%
kosarek.valid 190 1312600 †25.15% 0.00% 0.00%
bnetflix.valid 100 1325818 7.07% ?0.00% ?0.00%
accidents.test 111 1425966 ?0.00% 1.71% ?0.00%
jester.valid 100 1463335 7.86% 0.68% ?0.00%
msweb.test 294 1597487 †14.99% 0.00% 0.00%
accidents.valid 111 1617862 †433.17% 0.32% 0.00%
dna.ts 180 1849860 †16.82% 0.00% 0.00%
msweb.valid 294 1869374 †14.82% 0.00% 0.00%
tmovie.ts 500 1918883 0.00% - -
pigs-5000 441 1984359 †0.00% - -
dna.test 180 2019003 †22.33% 0.51% ?0.00%
book.ts 500 2071722 0.00% - -
dna.valid 180 2561134 †25.77% 0.00% 0.00%
tmovie.valid 500 2610026 0.00% - -
tmovie.test 500 2778556 0.00% - -
book.test 500 2794588 †0.00% - -
book.valid 500 3020475 †0.00% - -

Table 2: Solution quality on 41 large instances. The best method is shown in
bold. ’?’: optimum found, ’†’: out-of-memory, ’-’: no solution found.

7

	Quality of Lower Bounds and Time per Node
	Quality of Solutions and Optimality Proofs
	Impact of the Cut Pool Activity Threshold

